Contribution Number

2	
3	
4	Letter Ballot
5	MEF W139
6	
7	Internet Access Product Schemas and
	Developer Cuide
8	Developer Guide
9	
,	
10	
11	November 2023
12	
12	
15	

Contribution Number

EXPORT CONTROL: This document contains technical data. The download, export, re-export or 14

disclosure of the technical data contained in this document may be restricted by applicable U.S. or 15

foreign export laws, regulations and rules and/or applicable U.S. or foreign sanctions ("Export 16

Control Laws or Sanctions"). You agree that you are solely responsible for determining whether 17

- any Export Control Laws or Sanctions may apply to your download, export, reexport or disclosure 18 of this document, and for obtaining (if available) any required U.S. or foreign export or reexport 19
- licenses and/or other required authorizations. 20
- Disclaimer 21
- © MEF Forum 2023. All Rights Reserved. 22

The information in this publication is freely available for reproduction and use by any recipient 23 and is believed to be accurate as of its publication date. Such information is subject to change 24 without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume 25 responsibility to update or correct any information in this publication. No representation or 26 warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or 27 applicability of any information contained herein and no liability of any kind shall be assumed by 28

MEF as a result of reliance upon such information. 29

The information contained herein is intended to be used without modification by the recipient or 30

user of this document. MEF is not responsible or liable for any modifications to this document 31 made by any other party. 32

- The receipt or any use of this document or its contents does not in any way create, by implication 33 or otherwise: 34
- a) any express or implied license or right to or under any patent, copyright, trademark or 35 trade secret rights held or claimed by any MEF member which are or may be associated 36 with the ideas, techniques, concepts or expressions contained herein; nor 37
- b) any warranty or representation that any MEF members will announce any product(s) 38 and/or service(s) related thereto, or if such announcements are made, that such 39 announced product(s) and/or service(s) embody any or all of the ideas, technologies, or 40 concepts contained herein; nor 41
- c) any form of relationship between any MEF member and the recipient or user of this 42 document. 43

Implementation or use of specific MEF standards, specifications, or recommendations will be 44 voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF 45 Forum. MEF is a non-profit international organization to enable the development and worldwide 46 adoption of agile, assured and orchestrated network services. MEF does not, expressly or 47 otherwise, endorse or promote any specific products or services. 48

50	1	List of Contributing Members	1
51	2	Abstract	2
52	3	Terminology and Abbreviations	
53	4	Compliance Levels	4
54	5	Numerical Prefix Conventions	
55	6	Introduction	5
56	7	Overview of LSO Cantata and LSO Sonata	7
57	8	Overview of Internet Access Services	
58	9	Data Model Design Principles and Assumptions	
50	0.1	Mandatory Product Specific Attributes	14
59 60	9.1	Optional Product-Specific Attributes	
61	9.3	Fixed Product-Specific Attributes	
62	10	Information Model for Internet Access Product Data Model	
63	10.	1 Organization of Service Attributes	
64	11	Order Milestones	
65	12	Data Models for Internet Access Product	
66	12.	1 Organization and Structure of the Schemas	
67	12.2	2 Additional Details	
68	12	2.2.1 Naming Conventions	
69	12	2.2.2 IPVC End Point Service Attribute	
70	12	2.2.3 Identifiers	
71	13	Relationships Between Entities	
72	14	Basic vs. Advanced Service Attributes requirements	
73	15	Internet Access Service Attributes	40
74	15.	1 BasicInternetAccess	
75	15.2	2 AdvancedInternetAccessIpvc	
76	15.3	3 ExclusiveAdvancedInternetAccess	
77	15.4	4 IPVC	
78	1:	5.4.1 IaIpvcCommon	
79	1:	5.4.2 BasicIaIpvc	
80	1:	5.4.3 IaIpvcEndPointCommon	
81	1:	5.4.4 BasicIaIpvcEndPoint	
82	1:	5.4.5 AdvancedIaIpvcEndPoint	
83	1:	5.4.6 IPVC Cloud	
84	15.:	5 IP UNI	
85	1:	5.5.1 IpUniCommon	
86	1:	5.5.2 IpUni	
87	1:	5.5.3 BasicIaIpUni	
88	1:	5.5.4 ControlProtocol	

MEF

Internet Access Product Schemas and Developer Guide

89	15.5.5	ControlProtocolAddressing	53
90	15.5.6	UniManagementType	54
91	15.6 IP U	UNI Access Link	55
92	15.6.1	IpUniAccessLinkCommon	55
93	15.6.2	IpUniAccessLink	
94	15.6.3	BasicIaIpUniAccessLink	57
95	15.6.4	UNI Access Link BFD	58
96	15.6.5	ConnectionType	61
97	15.6.6	DhcpRelay	61
98	15.6.7	Vrid	61
99	15.6.8	Connection Addressing	62
100	15.6.9	L2Technology	65
101	15.6.10	VlanId	65
102	15.7 Eth	ernet UNI Access Link Trunk	66
103	15.7.1	IpUniAccessLinkTrunk	67
104	15.7.2	ÊthernetUniAccessLinkTrunk	67
105	15.7.3	EthernetPhysicalLink	67
106	15.7.4	ConnectorType	68
107	15.7.5	EthernetPhysicalLayer	68
108	15.7.6	Gender	69
109	15.7.7	SynchronousEthernet	69
110	15.7.8	UniAccessLinkEthernetLinkAggregation	70
111	15.7.9	LacpVersion	70
112	15.7.10	ConversationIdToAggregationLinkMap	71
113	15.7.11	ConversationIdRange	71
			71
114	16 Ancil	lary Constructs Service Attributes	
114	16 Ancil	llary Constructs Service Attributes	/1
114 115	16 Ancil 16.1 IP S	llary Constructs Service Attributes	72
114 115 116	16 Ancil 16.1 IP S 16.1.1	Iary Constructs Service Attributes SLS IpSls	71 72 72
 114 115 116 117 	16 Ancil 16.1 IP S 16.1.1 16.1.2	Iary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile	71 72 72 73
 114 115 116 117 118 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay	71 72 72 73 74
 114 115 116 117 118 119 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4	Ilary Constructs Service Attributes SLS IpSIs OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation	71 72 72 73 74 74
 114 115 116 117 118 119 120 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange	71 72 72 73 73 74 74 74 74
 114 115 116 117 118 119 120 121 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange OneWayPacketLossRatio	72 72 73 73 74 74 74 74 74 75
 114 115 116 117 118 119 120 121 122 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime	72 72 73 74 74 74 74 74 75 75
 114 115 116 117 118 119 120 121 122 123 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.8	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage	72 72 72 73 74 74 74 74 75 75 75
 114 115 116 117 118 119 120 121 122 123 124 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location	72 72 73 74 74 74 74 74 75 75 75 75 75
 114 115 116 117 118 119 120 121 122 123 124 125 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.10	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location MeanTimeToRepair	72 72 73 74 74 74 74 75 75 75 75 76 76
 114 115 116 117 118 119 120 121 122 123 124 125 126 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location MeanTimeToRepair SlsReferencePoint	72 72 73 74 74 74 74 74 75 75 75 75 76 76 76
114 115 116 117 118 119 120 121 122 123 124 125 126 127	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.12 16.1.12	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location MeanTimeToRepair SlsReferencePoint SlsReferencePointType	72 72 73 74 74 74 74 74 75 75 75 75 76 76 76 76 76
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128	16 Ancil 16.1 IP \$ 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.10 16.1.12 16.1.13	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location MeanTimeToRepair SlsReferencePoint SlsReferencePointType	72 72 73 74 74 74 74 75 75 75 75 75 75 76 76 76 76 76 77
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.2 16.1.3 16.2 Rou	Ilary Constructs Service Attributes SLS IpSls OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelayVariation OneWayPacketDelayRange OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location MeanTimeToRepair SIsReferencePoint SIsReferencePointType SIsRpPair uting Protocols	72 72 73 74 74 74 74 74 75 75 75 75 75 76 76 76 76 77 77
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.10 16.1.13 16.2 16.2 Rot 16.2.1 16.2	Ilary Constructs Service Attributes SLS IpSls. OneWayPacketDelayPercentile OneWayMeanPacketDelay OneWayInterPacketDelay Variation OneWayPacketDelayRange OneWayPacketDelayRange OneWayPacketLossRatio ServiceUptime Percentage Location. MeanTimeToRepair SlsReferencePoint SlsReferencePointType SlsRpPair uting Protocols RoutingProtocols	72 72 73 74 74 74 74 74 75 75 75 75 76 76 76 76 76 76 77 77 77
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.2 16.1.13 16.2 Rou 16.2.1 16.2.2	Ilary Constructs Service Attributes	71 72 72 73 74 74 74 74 75 75 76 76 77 77 78
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.13 16.2 16.2.1 16.2.2 16.2.3 16.2.3	Iary Constructs Service Attributes	71 72 72 73 74 74 74 75 75 75 76 76 76 77 77 77 78 78
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	16 Ancil 16.1 IP \$ 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.2 16.1.13 16.2 Rot 16.2.1 16.2.3 16.2.4 16.2.4	Iary Constructs Service Attributes	71 72 72 73 74 74 74 75 75 75 76 76 76 77 78 79
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.10 16.1.13 16.2 16.2.1 16.2.3 16.2.4 16.2.5	Iary Constructs Service Attributes	71 72 73 74 74 74 75 75 75 76 76 77 76 77 78 79 84
 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.10 16.1.13 16.2 16.2.1 16.2.3 16.2.4 16.2.5 16.2.6 16.2.6	Iary Constructs Service Attributes	71 72 73 74 74 74 74 74 75 75 76 76 76 76 77 78 78 79 84 86
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.2 16.1.3 16.2 Rou 16.2.1 16.2.2 16.2.3 16.2.4 16.2.6 16.3	Iary Constructs Service Attributes	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	16 Ancil 16.1 IP S 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.1.9 16.1.10 16.1.11 16.1.2 16.1.13 16.2 Rot 16.2.1 16.2.3 16.2.4 16.2.5 16.3 Bar 16.3.1 16.3.1	Ilary Constructs Service Attributes	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Internet Access Product Schemas and Developer Guide

139	16.4 IP	Addressing	
140	16.4.1	Ipv4Address	
141	16.4.2	Îpv4Prefix	
142	16.4.3	Ipv4PrimarySubnet	
143	16.4.4	Ipv4SecondarySubnet	
144	16.4.5	Ipv6Address	
145	16.4.6	Ipv6Prefix	
146	16.4.7	Ipv6Subnet	
147	16.4.8	Ipv4OrIpv6Address	
148	16.4.9	Ipv4OrIpv6Prefix	
149	16.5 Co	mmon Classes	100
150	16.5.1	EnabledDisabled	
151	16.5.2	IdentifierString	
152	16.5.3	InformationRate	
153	16.5.4	IrUnits	
154	16.5.5	TimeDuration	
155	16.5.6	TimeDurationUnits	
156	16.5.7	TwoOctetInteger	
157	16.5.8	FourOctetInteger	
158	17 Refe	rences	103
159	Appendix	A Usage examples (Informative)	105
160			
	A 1 Hig	ph-Level flow	105
161	A.1 Hig A 2 Int	gh-Level flow	
161	A.1 Hig A.2 Int	gh-Level flow egration of product specifications into the APIs	
161 162	A.1 Hig A.2 Int A.3 act A 3 1	gh-Level flow egration of product specifications into the APIs ion: add	
160 161 162 163	A.1 Hig A.2 Int A.3 act A.3.1 A 3.2	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POO - Basic Internet Access	
160 161 162 163 164	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A 3 3	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access	
160 161 162 163 164 165	A.1 Hig A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A 3.4	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access	
160 161 162 163 164 165 166 167	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Ouote - Basic Internet Access	
161 162 163 164 165 166 167 168	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access	
161 162 163 164 165 166 167 168	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A 4 act	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access ion: modify	
161 162 163 164 165 166 167 168 169 170	A.1 Hig A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A 4 1	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access ion: modify	
160 161 162 163 164 165 166 167 168 169 170	A.1 Hig A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A 5 act	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access ion: modify Use Case 7: POQ - Advanced Internet Access: Bandwidth change	
160 161 162 163 164 165 166 167 168 169 170 171 172	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access ion: modify Use Case 7: POQ - Advanced Internet Access: Bandwidth change ion: delete	
160 161 162 163 164 165 166 167 168 169 170 171 172 173	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act A.5.1 A 5.2	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access Use Case 7: POQ - Advanced Internet Access Bandwidth change ion: modify Use Case 8: Quote - Basic Internet Access - delete Use Case 8: Quote - Basic Internet Access - delete Use Case 9: Product Order - Advanced Internet Access - delete IPVC and En	
161 162 163 164 165 166 167 168 169 170 171 172 173 174	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act A.5.1 A.5.2	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access ion: modify Use Case 7: POQ - Advanced Internet Access: Bandwidth change ion: delete Use Case 8: Quote - Basic Internet Access - delete Use Case 9: Product Order - Advanced Internet Access - delete IPVC and En 125	
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act A.5.1 A.5.2 A.5.3	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access. Ion: modify Use Case 7: POQ - Advanced Internet Access: Bandwidth change Use Case 8: Quote - Basic Internet Access - delete Use Case 8: Quote - Basic Internet Access - delete IPVC and En 125 Use Case 10: Product Order - Exclusive Advanced Internet Access - delete al	
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act A.5.1 A.5.2 A.5.3 once	gh-Level flow egration of product specifications into the APIs ion: add Use Case 1: Address Validation Use Case 2: POQ - Basic Internet Access Use Case 3: POQ - Advanced Internet Access Use Case 3: POQ - Exclusive Advanced Internet Access Use Case 4: POQ - Exclusive Advanced Internet Access Use Case 5: Quote - Basic Internet Access Use Case 6: Product Order - Basic Internet Access Use Case 7: POQ - Advanced Internet Access: Bandwidth change Use Case 7: POQ - Advanced Internet Access - delete Use Case 8: Quote - Basic Internet Access - delete Use Case 9: Product Order - Advanced Internet Access - delete IPVC and En 125 Use Case 10: Product Order - Exclusive Advanced Internet Access - delete al 126	
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	A.1 Hi A.2 Int A.3 act A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 A.4 act A.4.1 A.5 act A.5.1 A.5.2 A.5.3 once Appendix	 gh-Level flow	

Page v

List of Figures

180	Figure 1 LSO Cantata and LSO Sonata Reference Diagram	7
181	Figure 2 LSO Cantata and LSO Sonata API Structure	
182	Figure 3 Internet Access Service - concept (MEF 61.1, IP Service Attributes [17])	
183	Figure 4 Examples of UNI Access Links in a Single UNI concept (MEF 61.1, IP Serv	vice
184	Attributes [17]	
185	Figure 5 Information model for Basic Internet Access product	
186	Figure 6 Information model for Advanced Internet Access product	19
187	Figure 7 Information model for Exclusive Advanced Internet Access product	
188	Figure 8 IPVC and IPVC End Points Common classes	
189	Figure 9 IP UNI Common class	
190	Figure 10 IP UNI Access Link	
191	Figure 11 Ethernet UNI Access Link Trunk	
192	Figure 12 Schema Files Organization	
193	Figure 13 Basic Internet Access product	
194	Figure 14 Exclusive Advanced Internet Access product	
195	Figure 15 IPVC	
196	Figure 16 IaIpvcCloud	
197	Figure 17 IP UNI	50
198	Figure 18 IP UNI Access Link	55
199	Figure 19 IPV4 and IPV6 Connection Addressing	
200	Figure 20 EthernetUniAccessLinkTrunk	66
201	Figure 21 IpSls	
202	Figure 22 Routing Protocols	77
203	Figure 23 Bgp	
204	Figure 24 Ospf	
205	Figure 25 Static	86
206	Figure 26 BasicIaBwpEnvelope	88
207	Figure 27 IpvcEpBwpEnvelope	
208	Figure 28 IpUniBwpEnvelope	
209	Figure 29 IpUniAccessLinkBwpEnvelope	
210	Figure 30 IP Addressing	
211	Figure 31 Cantata and Sonata End-to-End Function Flow	105
212	Figure 32 The Extension Pattern	107
213	Figure 33 UC1: Address Validation request	
214	Figure 34 UC1: Address Validation response	
215	Figure 35 Basic Internet Access Topology	
216	Figure 36 Information model for Basic Internet Access product	
217	Figure 37 UC2: POQ Request, product-agnostic part	113
218	Figure 38 UC2: IPVC configuration	
219	Figure 39 UC2: IP UNI configuration	
220	Figure 40 UC2: IP Uni Access Link configuration	115
221	Figure 41 UC2: IP Uni Access Link Trunk configuration	
222	Figure 42 Advanced Internet Access topology	
223	Figure 43 UC3: POQ Request, product-agnostic part	
224	Figure 44 UC3: IPVC configuration	

Internet Access Product Schemas and Developer Guide

225	Figure 45 UC3: IP UNI configuration	117
226	Figure 46 UC3: IP UNI Access Link configuration	118
227	Figure 47 UC3: IP UNI Access Link Trunk configuration	118
228	Figure 48 Information model for Advanced Internet Access product	118
229	Figure 49 Complex topology example of Advanced Internet Access	119
230	Figure 50 Exclusive Advanced Internet Access topology	120
231	Figure 51 UC4: POQ Request, product-agnostic part	120
232	Figure 52 UC5: Quote Request, product-agnostic part	121
233	Figure 53 UC6: Product Order Request, product-agnostic part	123
234	Figure 54 UC7: POQ Request, product-agnostic part	124
235	Figure 55 UC7: IP UNI configuration	124
236	Figure 56 UC8: Quote request	125
237	Figure 57 UC9: Product Order, product-agnostic part	125
238	Figure 58 UC9: IP UNI configuration	126
239	Figure 59 UC10: Product Order request	126
240		

List of Tables

242	Table 1 Numerical Prefix Conventions	4
243	Table 2 Order Milestones for Internet Access	. 25
244	Table 3 Product Relationship Roles	. 29
245	Table 4 Place Relationship Role	. 30
246	Table 5 IPVC Service Attributes requirements	. 33
247	Table 6 IPVC End Point Service Attributes requirements	. 34
248	Table 7 IP UNI Service Attributes requirements	. 36
249	Table 8 IP UNI Access Link Service Attributes requirements	. 39
250	Table 9 BasicInternetAccess	. 41
251	Table 10 AdvancedInternetAccessIpvc	. 42
252	Table 11 ExclusiveAdvancedInternetAccess	. 43
253	Table 12 IaIpvcCommon	. 44
254	Table 13 BasicIaIpvc	. 45
255	Table 14 IaIpvcEndPointCommon	. 45
256	Table 15 BasicIaIpvcEndPoint	. 46
257	Table 16 AdvancedIaIpvcEndPoint	. 46
258	Table 17 IaIpvcCloud	. 47
259	Table 18 CloudDataLimit	. 48
260	Table 19 CloudDns	. 48
261	Table 20 DnsType	. 49
262	Table 21 SubscriberPrefixList	. 49
263	Table 22 IpPrefixOrigin	. 50
264	Table 23 IpUniCommon	. 51
265	Table 24 IpUni	. 52
266	Table 25 BasicIaIpUni	. 53
267	Table 26 ControlProtocol	. 53
268	Table 27 ControlProtocolAddressing	. 54
269	Table 28 UniManagementType	. 54
270	Table 29 IpUniAccessLinkCommon	. 56
271	Table 30 IpUniAccessLink	. 57
272	Table 31 BasicIaIpUniAccessLink	. 58
273	Table 32 AccessLinkBfd	. 59
274	Table 33 AddressFamilyIpv4Ipv6Both	. 59
275	Table 34 BfdActiveEnd	. 60
276	Table 35 BfdAuthenticationType	. 61
277	Table 36 ConnectionType	. 61
278	Table 37 DhcpRelay	. 61
279	Table 38 BasicIaUniIpv4ConnectionAddressing	. 62
280	Table 39 UniIpv4ConnectionAddressing	. 63
281	Table 40 BasicIaUniIpv6ConnectionAddressing	. 63
282	Table 41 UniIpv6ConnectionAddressing	. 64
283	Table 42 Ipv4AddressingType	. 64
284	Table 43 BasicIaUniIpv6AddressingType	. 64
285	Table 44 Ipv6AddressingType	. 65
286	Table 45 L2Technology	. 65

287	Table 46 EthernetUniAccessLinkTrunk	67
288	Table 47 EthernetPhysicalLink	68
289	Table 48 ConnectorType	68
290	Table 49 EthernetPhysicalLayer	69
291	Table 50 Gender	69
292	Table 51 SynchronousEthernet	70
293	Table 52 UniAccessLinkEthernetLinkAggregation	70
294	Table 53 LacpVersion	71
295	Table 54 ConversationIdToAggregationLinkMap	71
296	Table 55 ConversationIdRange	71
297	Table 56 IpSls	73
298	Table 57 OneWayPacketDelayPercentile	73
299	Table 58 OneWayMeanPacketDelay	74
300	Table 59 OneWayInterPacketDelayVariation	74
301	Table 60 OneWayPacketDelayRange	75
302	Table 61 OneWayPacketLossRatio	75
303	Table 62 ServiceUptime	75
304	Table 63 Location	76
305	Table 64 MeanTimeToRepair	76
306	Table 65 SIsReferencePoint	76
307	Table 66 SIsReferencePointType	77
308	Table 67 SIsRpPair	77
309	Table 68 RoutingProtocols	78
310	Table 69 RoutingProtocolsBgpOptions	78
311	Table 70 RoutingProtocolsOspfOptions	/9
312	Table / I Bgp	80
313	Table 72 BgpCommunity	80
314	Table 73 BgpExtendedCommunity	81
315	Table 74 AddressFamilyIpv4Ipv6	81
316	Table 75 Damping	82
317	Table 70 PeeringAddress	02
318	Table 77 PeeringAddress Type	01
319	Table 78 SubschoerAndSpLoopbackAddresses	04
320	Table 79 Ospi	04
321	Table 80 OspiAlea I ype	0J 05
322	Table 81 OspiAutientication Type	05
323	Table 82 StaticInEntry	00 97
324 225	Table 84 Forwarding Information	87
325	Table 85 Pasiala PwpEnvalana	80
326	Table 65 DasiciaDwpEnvelope	09
327	Table 87 InveEnBunEnvelope	09
320 320	Table 88 InUniBwnEnvelope	02
329 330	Table 89 InUni & coessI inkBwnEnvelope	92 Q/
330	Table 90 InBwnFlow	95
337	Table 91 InBwnFlowPerAccessI ink	95
332	Table 92 InBwnFlowPerAccessI inkInvcEnAndCosName	96
555	1 auto 72 1pb wp110w1 craccoschiktpvccpanuC031vanic	70

Internet Access Product Schemas and Developer Guide

224	Table 02 In Dwn Elow Dar Inve En	06
334		
335	Table 94 IpBwpFlowPerIpvcEpAccessLink	
336	Table 95 IpBwpFlowPerIpvcEpAndCosName	
337	Table 96 BurstBehavior	
338	Table 97 IpBwpFlowPerCosName	
339	Table 98 IpvcEpAndCosName	
340	Table 99 Ipv4Prefix	
341	Table 100 Ipv4PrimarySubnet	
342	Table 101 SecondarySubnet	
343	Table 102 Ipv6Prefix	
344	Table 103 Ipv6Subnet	
345	Table 104 Ipv4OrIpv6Prefix	
346	Table 105 EnabledDisabled	
347	Table 106 InformationRate	
348	Table 107 IrUnits	
349	Table 108 TimeDuration	
350	Table 109 TimeDurationUnits	

352 1 List of Contributing Members

The following members of the MEF participated in the development of this document and have requested to be included in this list.

- 355 Amartus
- Cisco
- 357 Colt
- 358 Lumen
- 359

360 **2** Abstract

The MEF Standard consisting of this schema guide and its associated software artifacts (JSON Schemas) defines and describes the product-specific information used in LSO Cantata and LSO Sonata APIs for a set of Business Functions - specifically, Product Offering Qualification, Quote, Product Ordering, and Product Inventory - for Basic and Advanced Internet Access product. The document starts with an overview of LSO Cantata, LSO Sonata, and Internet Access services. It then provides a basic information model for the MEF Internet Access Service Attributes. The final sections describe the Data Model focused on the JSON Schemas associated with this specification.

This document can be thought of as a user's guide for the Internet Access Data Model and the schemas provided that embody the Data Model. MEF Services are described by a set of Service Attributes. Each Service Attribute describes an aspect of the service that is agreed upon between the provider and the user of the service. The documents that describe the Service Attributes for Internet Access Services are MEF 61.1 [17] and MEF 61.1.1 [18]. The Basic and Advanced services are specified in MEF 69.1 [19] based on the Service Attributes defined in MEF 61.1 [17].

MEF 61.1 [17] and MEF 61.1.1 [18] specify Service Attributes to describe the various components that compose a Basic Internet Access service and Advanced Internet Access. This document defines a data model that includes these Service Attributes respectively and also lists the Service Attributes that are not included in the data model or are present in modified form, and the reason why each is not included or modified.

This Standard normatively incorporates the following files by reference as if they were part of this document, from the GitHub repository <u>https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK</u>, commit id: c43f8884c305631717cf9eea08be5937d9b48198:

- 382 productSchema/ip/
- 383 common/ipCommon.yaml
- common/ipSls.yaml
- internetAccess/advancedInternetAccessIpvc/advancedInternetAccessIpvc.yaml
- internetAccess/basicInternetAccess/basicInternetAccess.yaml
- internetAccess/exclusiveAdvancedInternetAccess/exclusiveAdvancedInternetAccess
 .yaml
- internetAccess/internetAccessCommon/internetAccessCommon.yaml
- ipUni/ethernetUniAccessLinkTrunk.yaml
- ipUni/ipUni.yaml
- ipUni/ipUniAccessLink.yaml
- ipUni/ipUniCommon.yaml

Also included in the GitHub repository is a Postman file that contains informative examples illustrating use of the Internet Access. This file is not part of this standard but is referred to in Appendix A.

documentation/productSchema/ip/internetAccess/MEF 139 - Appendix A.postman_c
 ollection.json

399 **3 Terminology and Abbreviations**

This document does not define any new terms or definitions. All of the terms defined in the standards below are included in this document by reference:

- MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and Framework [14]
- MEF 55.1.1 Amendment to MEF 55.1: Reference Architecture and Framework -Terminology [15]
- MEF 57.2 Product Order Management Requirements and Use Cases [16]
- MEF 61.1 IP Service Attributes [17]
- MEF 61.1.1 Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and Mean Time to Repair Performance Metric [18]
- MEF 69.1 Subscriber IP Service Definitions [19]
- MEF 79 Address, Service Site, and Product Offering Qualification Management, Requirements and Use Cases [20]
- MEF 106 LSO Sonata Access E-Line Product Schemas and Developer Guide [24]

415 **4** Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119 [5], RFC 8174 [10]) when, and only when, they appear in all capitals, as shown here. All key words must be in bold text.

Items that are **REQUIRED** (contain the words **MUST** or **MUST NOT**) are labeled as **[Rx]** for required. Items that are **RECOMMENDED** (contain the words **SHOULD** or **SHOULD NOT**) are labeled as **[Dx]** for desirable. Items that are **OPTIONAL** (contain the words **MAY** or **OPTIONAL**) are labeled as **[Oy]** for optional

424 **OPTIONAL**) are labeled as **[Ox]** for optional.

425 **5** Numerical Prefix Conventions

- This document uses the prefix notation to indicate multiplier values as shown in Table 1.
- 427

Decimal		Binary	
Symbol	Value	Symbol	Value
k	10 ³	Ki	2 ¹⁰
М	10 ⁶	Mi	2^{20}
G	10 ⁹	Gi	2^{30}
Т	10^{12}	Ti	2^{40}
Р	10^{15}	Pi	2^{50}
Е	10^{18}	Ei	2^{60}
Ζ	10 ²¹	Zi	270
Y	10^{24}	Yi	2^{80}

Table 1 Numerical Prefix Conventions

430 **6** Introduction

431 LSO Cantata and LSO Sonata provide a programmatic interface for establishing (quoting, ordering, etc.) products between a Seller and a Buyer). In the case of LSO Cantata the Seller is a 432 Service Provider and the Buyer is a Subscriber. In the case of LSO Sonata the Buyer is a Service 433 Provider and the Seller is a Partner. This API is hierarchically structured. The outer-most structure 434 includes information relating to the access method (e.g., REST), next is information relating to the 435 function being requested (e.g., Product Order Qualification or Quote, etc.) and the inner-most 436 structure contains information relating to the specific product, in this specification, Basic or 437 Advanced Internet Access. 438

Internet Access is a Subscriber IP Service that connects the Subscriber to the Internet. The Service
Attributes that are agreed to between the parties are defined in MEF 61.1 [17] and MEF 61.1.1
[18]. The Service definitions for Basic and Advanced Internet Access which are, in effect, a set of

442 constraints on the values of the Service Attributes, are provided in MEF 69.1 [19].

This specification is accompanied by a Data Model for the Internet Access components instantiated
 as a set of JSON schemas that can be used within the LSO Cantata or LSO Sonata API to perform
 Product Order Qualification, Quotation, Order, and request an Inventory for the Internet Access
 Product consisting of:

- IPVC, including exactly one IPVC End Point
- 448 IP UNI
- IP UNI Access Link
- IP UNI Access Link Trunk
- 451 The document contains the following sections:
- An overview of LSO Cantata and LSO Sonata (section 7)
- An overview of the Internet Access Service (section 8)
- Data Model Design Principles (section 9)
- Order Milestones (section 0)
- An abbreviated Information Model for Internet Access and explanation of the organization of the Service Attributes in MEF 61.1 [17] and MEF 61.1.1 [18] (section 10)
- Organization of the Data Model for Internet Access (section 12)
- The relationship between the entities in the service (section 13)
- The detailed comparison of Service Attributes of Basic and Advanced Products with a list of Service Attributes that are not included in the Data Model (section 0)

These are followed by two sections that contain tables that describe the details of the data model. The tables include information about each class and a list of properties in each class. For each property, the JSON Name, description, data type, cardinality, details about allowed values, and, in

some cases, some additional information about relationships between Service Attributes areprovided.

468 7 Overview of LSO Cantata and LSO Sonata

MEF 55.1 [14] describes the Reference Architecture for Lifecycle Service Orchestration (LSO) of 469 MEF-defined services. MEF 55.1 defines seven LSO Interface Reference Points (see Figure 1) 470 that are abstract interconnection points between different entities—either within the Service 471 Provider domain (intra-domain) or between Service Provider and other business entities (inter-472 domain). One of these LSO Reference Points is LSO Cantata which defines the abstract 473 interconnection point between a Subscriber (Buyer) and a Service Provider (Seller) and another is 474 LSO Sonata which defines the abstract interconnection point between a Service Provider (Buyer) 475 and an Operator (Seller). It is at these Interface Reference Points - LSO Cantata and LSO Sonata 476 - that the Buyer and the Seller interact to orchestrate business transactions for the different 477 Business Functions. Inter-provider Business Functions include Address Qualification, Site Query, 478 Product Offering Qualification, Quote, Product Ordering, Product Inventory, Trouble Ticketing, 479 and Billing In the context of this document, the following 4 business functions are relevant as ones 480 exchanging product information: 481

- Product Offering Qualification, MEF 79 [20]
- Quote, MEF 80 [21]
- Product Ordering, MEF 57.2 [16]
- Product Inventory, MEF 81 [22]

Figure 1 LSO Cantata and LSO Sonata Reference Diagram

The mutual access to Business Functionalities is automated via APIs at the LSO Cantata and LSO Sonata Interface Reference Points which are standardized by MEF as LSO Cantata and LSO Sonata APIs, and which are made available by MEF in a series of releases of the LSO Cantata SDK and LSO Sonata SDK. The APIs are standardized by following API and Developer Guide documents:

- Product Offering Qualification, MEF 87 [23]
- Quote, MEF 115 [25]

MEF W139 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

Page 7

- Product Ordering, MEF 123 [28]
- Product Inventory, MEF 116 [26]

The LSO Cantata and LSO Sonata APIs comprise two parts—a product-agnostic API and a set of product-specific data models, as shown in Figure 2.

499 500

Figure 2 LSO Cantata and LSO Sonata API Structure

- 501 This document describes the product-specific Data Model for a MEF Internet Access service as
- 502 defined in MEF 69.1 [19].

504 8 Overview of Internet Access Services

This specification describes a data model for MEF-defined Internet Access Services. An Internet Access Service is a Subscriber IP Service which means it is provided to an end-user (the Subscriber) by a Service Provider. A Subscriber can be an enterprise, a mobile operator, an IT system integrator, a government department, etc. An Internet Access Service provides the Subscriber with connectivity to the global Internet. In this case, the Service Provider is acting as an Internet Service Provider.

- 511 Internet Access is composed of 5 main building blocks:
- IPVC: An IP Service is formed of an IP Virtual Connection (IPVC) that links together
 IPVC End Points at a UNI (or IPVC End Points and "the Internet" as in the Internet
 access case).
- IPVC End Point: A logical entity at a UNI, to which a subset of packets that traverse that UNI is mapped.
- UNI: A User Network Interface (UNI), the demarcation point between the responsibility of the SP and the responsibility of the Subscriber. Note that a given UNI always relates to a single SP and a single Subscriber.
- IP UNI Access Link: An individual IP connection (i.e. a subnetwork corresponding to a distinct IP subnet) between the Subscriber and the Service Provider that forms part of that UNI.
- IP UNI Access Link Trunk: An underlying construct that encapsulates the Layer 1 and Layer 2 characteristics of the UNI Access Link. A UNI Access Link Trunk may carry packets for a single UNI Access Link, as in the case where the UNI Access Link is a direct physical connection or may carry packets for multiple UNI Access Links, for example when the UNI Access Link is an Ethernet VLAN. The UNI Access Link Trunk itself may be a single physical link, may comprise multiple physical links such as an Ethernet Link Aggregation Group, or may be logical such as an IP tunnel.

531 Figure 3 Internet Access Service - concept (MEF 61.1, IP Service Attributes [17])

Subscribers' perception of Internet access is that it allows general access to a range of content available on the Internet. The content can be served from within the SP Network, or typically from outside of it. There is no strict boundary between the IPVC that provides access to the Internet, and the Internet itself (as shown in the Figure above). The IPVC thus has only one IPVC End Point at the UNI that connects to the Subscriber but does not have one that would connect it to the Internet.

Figure 4 shows some examples of how UNI Access Links in a given UNI can be connected to one or multiple devices at the Subscriber and the Service Provider. Other arrangements are also

540 possible.

Page 11

- Two types of Internet Access are defined in MEF 69.1 [19]: Basic and Advanced. The possible values for certain Service Attributes differ between these two types.
- 547 Basic Internet Access is typically delivered to residential dwellings. It may be offered to 548 small/medium businesses. Its service characteristics typically include:
- plug-and-play ease of use
- 550 low-cost
- for IPv4, a few (or shared) publicly routed addresses

Advanced Internet Access is typically delivered to business locations. Its service characteristics include:

- redundancy features
- dynamic routing protocol support (e.g., BGP [1] routing)
- options for Subscriber-supplied IP addressing
- proactive monitoring to support a Service Level Specification (SLS)
- 558 This standard additionally introduces a version of Advanced Internet Access, called Exclusive
- Advanced Internet Access. The details and rationale are presented in section 10.

561 9 Data Model Design Principles and Assumptions

A Service Attribute for a Product can have a value that is a simple datatype such as an integer or 562 string (or list of simple datatypes) or a value that is an object with multiple properties such as a 563 Bandwidth Profile or a composition of objects such as an IPv4 Secondary Subnet List. Within this 564 document, each simple value (integer, string, boolean, etc.) is referred to as a Product-Specific 565 Attribute. A Product-Specific Attribute could be a Service Attribute (in the case where the Service 566 Attribute itself has a simple type) or it could be a parameter within a Service Attribute (if the 567 Service Attribute is a structured object or a composition of such objects). There are no Product-568 Specific Attributes that are tagged as "Required" in the Internet Access data model and, as such, 569 each must be assigned by each Seller into one of three classifications as defined below. 570

Note: The one exception to the previous paragraph is the IPVC End Point defined for the IPVC (and subclasses). This must be included in the Internet Access data model since the IPVC is incomplete without them and is therefore tagged as "Required".

- 574 The design for the Internet Access data model is based on several assumptions:
- None of the Product-Specific Attributes included in the schemas are coded as "Required".
- The Buyer and Seller agree to assign each Product-Specific Attribute included in the schemas into one of three classifications. The classification for each Product-Specific Attribute may be different across Business Functions, Product Actions, and Product Offerings.
- 581oMandatory attributes that must be provided by the Buyer in a582POQ/Quote/Order request or must be returned by the Seller for an Inventory583request as specified in section 9.1.
- 584oOptional attributes that may be provided by the Buyer in a POQ/Quote/Order585request and may be returned by the Seller for an Inventory request as specified586in section 9.2.
- 587
 o Fixed attributes that are hard-coded and may be specified by the Buyer in a
 588
 POQ/Quote/Order request (subject to agreement between the Buyer and Seller)
 589
 and may be returned by the Seller for an Inventory request (subject to
 590
 agreement between the Buyer and Seller) as specified in section 9.3.
- 591 As noted above, the classification may depend on:
- Business Function a given Product-Specific Attribute may, for example, be classified as
 Fixed for the Create POQ request; while it may be classified as Mandatory for the Create
 Product Order request.
- Product Action a given Product-Specific Attribute may, for example, be classified as
 Mandatory for the Create POQ request for an INSTALL of a new product, while it may be
 classified as Fixed for the Create POQ request for a CHANGE of an installed Product.

 Product Offering - a given Product-Specific Attribute may, for example, be classified as Mandatory for the Create POQ request for a Product Offering (e.g., Premium Service), while it may be classified as Fixed for the Create POQ request for a different Product Offering (e.g., Basic Service).

The Product-Specific Attribute classification can be defined and negotiated during the onboarding
 process or defined in a Product Catalog.

- 604[R1]The Seller and Buyer MUST agree, for each Product-Specific Attribute,605whether the attribute is Mandatory, Optional, or Fixed for each Business606Function (POQ, Quote, Order) and Product Action (INSTALL, CHANGE) for607a Product Offering.
- 608**[R2]**The Seller and Buyer MUST agree, for each Product-Specific Attribute,609whether the attribute is Mandatory, Optional, or Fixed for Inventory for a610Product Offering.
- 611**[R3]**If, for a Product Offering, a Product-Specific Attribute is classified as Optional612for any Business Function and, if applicable, Product Action, the Seller and613Buyer **MUST** agree on the default value for the attribute.
- 614**[R4]**The Seller MUST reject an API request if the value for a Product-Specific615Attribute requested by the Buyer is not a supported value for the applicable616Product Offering.

⁶¹⁷ The Internet Access data model supports both INSTALL and CHANGE actions for POQ, Quote,

and Order for all specified products. Note that the DISCONNECT action does not require support

619 from the data model.

Note: A CHANGE request cannot change a single Service Attribute. The Buyer must send a full
 product configuration including all Mandatory Service Attributes (section 9.1) and all Optional
 Service Attributes (section 9.2) that were previously specified by the Buyer (in an INSTALL
 request or previous CHANGE request). Any Optional Service Attributes that are not specified in
 a CHANGE request are reset to their default value.

- 625 9.1 Mandatory Product-Specific Attributes
- 626**[R5]**If a Product-Specific Attribute is agreed to be Mandatory for a Business627Function (POQ, Quote, Order), Product Action (INSTALL, CHANGE), and628Product Offering, then the Buyer **MUST** include a value for the attribute in the629corresponding API request.
- 630**[R6]**If a Product-Specific Attribute is agreed to be Mandatory for Inventory for a631Product Offering, then the Seller MUST include a value for the attribute in the632corresponding API response.

_	MEF		Internet Access Product Schemas and Developer Guide
		[R7]	When the Seller receives a POQ, Quote, or Order request in which any of the Mandatory Product-Specific Attributes are not included, the request MUST be rejected by the Seller.
ç	9.2	Optiona	al Product-Specific Attributes
		[01]	If a Product-Specific Attribute is agreed to be Optional for a Business Function (POQ, Quote, Order), Product Action (INSTALL, CHANGE), and Product Offering, then the Buyer MAY include a value for the attribute in the corresponding API request.
		[R 8]	The Seller MUST apply the agreed default value for an Optional Product-Specific Attribute if a value is not included by the Buyer in the corresponding API request.
		[R9]	If a Product-Specific Attribute is agreed to be Optional for Inventory for a Product Offering, then the Seller MUST include a value for the attribute in the corresponding API response if the value is not the agreed default value.
		[O2]	If a Product-Specific Attribute is agreed to be Optional for Inventory for a Product Offering, then the Seller MAY include a value for the attribute in the corresponding API response if the value is the agreed default value.
ç	9.3	Fixed P	roduct-Specific Attributes
A	A Prod	luct-Specif	fic Attribute may be classified as Fixed for a Business Function, Product Action,

A Product-Specific Attribute may be classified as Fixed for a Business Function, Product Action,
 and Product Offering when only one value is applicable for the Seller. This can be the case for
 example if:

- the Seller supports only a single value, or
- the value is derived by the Seller from the value of one or more other Product-Specific
 Attributes, or
- the Seller specifies a single value in the Product Catalog for a specific Product Offering, or
- the Buyer and the Seller agree on a single value during onboarding

660 Since these are Product-Specific Attributes, each value must still be agreed upon in some way 661 between the Buyer and the Seller, which implies that even in the first two cases, the Seller must 662 make the Buyer aware of what the value is or how it is derived, before the Buyer places an order. 663 How this is done is outside the scope of this document.

- The Seller applies the one applicable value for every request for which the Product-Specific Attribute is classified as Fixed.
- 666[R10]The Buyer and Seller MUST agree on whether the Buyer can include Product-667Specific Attributes that have been classified as Fixed in API requests for POQ,668Quote, and Order.

XX
MEF

- 669[R11]If the Buyer and Seller agree that Product-Specific Attributes classified as670Fixed cannot be included in API requests (see [R10]), the Buyer and Seller671MUST agree on whether the Seller includes Product-Specific Attributes672classified as Fixed in the corresponding API responses.
- [R12] If the Buyer and Seller agree that Product-Specific Attributes classified as
 Fixed cannot be included in API requests (see [R10]), the Seller MUST
 reject an API request from the Buyer if it includes a Product-Specific Attribute
 that has been classified as Fixed for the Business Function (POQ, Quote,
 Order), Product Action (INSTALL, CHANGE), and Product Offering.
- 678[R13]If the Buyer and Seller agree that Product-Specific Attributes classified as679Fixed cannot be included in API requests (see [R10]), and if a Product-Specific680Attribute is classified to be Fixed for Inventory for a Product Offering, then the681Seller MUST NOT include a value for the Product-Specific Attribute in the682Inventory API responses.
- 683[R14]If the Buyer and Seller agree that Product-Specific Attributes classified as684Fixed can be included in API requests (see [R10]), the Seller MUST reject685an API request from the Buyer if it includes a Product-Specific Attribute that686has been classified as Fixed for the Business Function (POQ, Quote, Order),687Product Action (INSTALL, CHANGE), and Product Offering and includes a688value that is different than the agreed-on fixed value.
- 689[R15]If the Buyer and Seller agree that Product-Specific Attributes classified as690Fixed can be included in API requests (see [R10]), and if a Product-Specific691Attribute is classified to be Fixed for Inventory for a Product Offering, then the692Seller MUST include a value for the Product-Specific Attribute in the693Inventory API responses.

10 Information Model for Internet Access Product Data Model

Internet Access Services are composed of five primary classes of objects: IPVC, IPVC End Point,
 IP UNI, IP UNI Access Link, and IP UNI Access Link Trunk. A complete Internet Access product
 consists of:

- Exactly one IPVC (see section 15.4)
- One IP UNI where the Subscriber accesses the service (see section 15.5).
- Exactly one IPVC End Point for the IPVC at this IP UNI. (see section 15.4.3).
- One (for Basic and Exclusive Internet Access) or more UNI Access Links in each UNI, (see section 15.6).
- One (for Basic and Exclusive Internet Access) or more UNI Access Link Trunks each carrying one or more UNI Access Links (see section 15.7).

Based on the above there are two main types of Internet Access defined - Basic and Advanced.
The Advanced one comes with an additional flavor called "Exclusive". The differences between
them are explained by the following figures. The convention is as follows:

- The surrounding rectangle designates the scope of a given product and provides its name.
- The model shows only the main components listed above and the relations between them, including cardinalities. All other attributes and types are hidden.
- Relations between other products (crossing the big rectangles) or locations are not provided as Product Specific Attributes. They are handled by the API (POQ, Quote, Order, Inventory) model attributes (as specified in section 13). The source and target of such relations on the diagrams are bound to objects that are their logical sides, yet technically the relation is on the root product level.
- 717
- 718

Figure 5 Information model for Basic Internet Access product

Figure 5 presents the information model for Basic Internet Access. MEF 69.1 [19] defines 722 restrictions for Basic Internet Access such that all relations' cardinalities have exactly the value 723 of 1 and that they are exclusive for a given product instance (meaning that all components serve 724 only one IPVC). In other words, a Basic Internet Access Service comprises one IPVC with one 725 IPVC End Point located at one UNI, and that UNI comprises one UNI Access Link which is 726 transported over one UNI Access Link Trunk; moreover, all of these are dedicated to the Basic 727 Internet Access Service and cannot be used for or shared with any other service. MEF 61.1.1 [18], 728 which introduces the UNI Access Link Trunk, does not specify such requirement as it only defines 729 the Service Attributes, yet this document adds such restriction for consistency with the Basic 730 Internet Access specifics. This allows this product to be modeled in a simplified way as one main 731 type (BasicInternetAccess) having all components as single ref attributes. This means that all 732 components (IPVC, IPVC End Point, UNI, UNI Access Link, and UNI Access Link Trunk) are 733 ordered with a single Product Order Item. Since all components are within the same order, the only 734 API-level relation is the one to a place. It is the UNI Access Link Trunk that is the logical owner 735 of the relationship 736

Figure 6 Information model for Advanced Internet Access product

Figure 6 shows the building blocks of an Advanced Internet Access product. It implements the
Advanced flavor of Internet Access as specified by MEF 69.1 [19]. It is a set of 4 distinct products
that must be ordered separately by different Product Order Items of one (or more) Product Orders.
Note the main differences compared to Basic Internet Access:

- The IPVC and IPVC End Point contain product specific attributes for Advanced Internet Access, per MEF 69.1.
- IP UNI can serve more than one Advanced Internet Access product (and possibly other
 IP products such as IP VPN).
- IP UNI can be provided by more than one IP UNI Access Link.
- Ethernet UNI Access Link Trunk can serve more than one IP UNI Access Link.
- All relations between components are specified by API product or item relationships
 (as specified in section 13).
- The place relationship is specified by the Ethernet UNI Access Link Trunk product.

Note an Advanced Internet Access service can use the same IP UNI (and hence the same
IP UNI Access Links and UNI Access Link Trunks) as other IP Services; hence there is
nothing specific to Internet Access in the definition of the IP UNI, IP UNI Access Link or
Ethernet UNI Access Link Trunk products.

Page 19

758

Figure 7 Information model for Exclusive Advanced Internet Access product

MEF 69.1 [19] defines 2 types of Internet Access: Basic and Advanced. They differ by several requirements summarized in section 14. However, the flexibility of Advanced Internet Access comes with the burden of having to order 4 different products. This burden is partially mitigated by introducing the Exclusive Advanced Internet Access product. It is still an Advanced Internet Access as specified by MEF 69.1 [19] but adds some assumptions that cover most of the probable common deployment configurations. These are:

- The IP UNI is dedicated exclusively (hence the product name) to the Advanced Internet Access service (IPVC), no other services can be run over that IP UNI.
- The IP UNI comprises one IP UNI Access Link.

This allows merging the IPVC, IP UNI, and IP UNI Access Link into one product definition called
Exclusive Advanced Internet Access. This also reduces the number of product relations to only 1.
The Ethernet UNI Access Link Trunk remains a separately ordered product, allowing for serving
multiple IP UNI Access Links.

- The three cases described above are composed of six products defined in this document:
- Basic Internet Access
- Advanced Internet Access IPVC
- 775 IP UNI
- IP UNI Access Link
- Ethernet UNI Access Link Trunk
- Exclusive Advanced Internet Access

Organization of Service Attributes 10.1 779

The data model of Internet Access products is based on Service Attributes defined in MEF 61.1 780

[17], and MEF 61.1.1 [18], and implements Service Definition Requirements as specified in MEF 781

69.1 [19] Section 9. These requirements result in Basic and Advanced versions being a variation 782

of Service Attributes defined in MEF 61.1 [17]. A set of Common classes is introduced in the data 783 model to gather the attributes shared by Basic and Advanced flavors. Note that the Common types 784

are not as specified by MEF 61.1 [17] or MEF 61.1.1 [18] but only subsets of them. 785

787

788

Figure 8 IPVC and IPVC End Points Common classes

Figure 8 presents the organization of Common IPVC and IPVC End Point types and differences 789

in their respective Basic and Advanced subtypes. The IPVC flavors differ only by the type of 790

referenced IPVC End Points which have different types used for ingress and egress bandwidth 791

profiles envelopes and the AdvanceIaIpvcEndPoint additionally specifies prefixMapping. The 792

details of the differences are described in section 0. 793

- The naming convention is to have a full version of "InternetAccess" in the types that are 794
- orderable products and the abbreviation "Ia" in others. 795

Figure 9 IP UNI Common class

Figure 9 shows that the difference between the Basic and Advanced flavors of UNI is how the bandwidth profiles envelopes are specified and the IpUni can additionally provide routingProtocols configuration. Note that the Advanced prefix is not present for the IpUni model used by Advanced Internet Access. This is because this form does not introduce any Internet Access specific restrictions and can be shared by different IP products (e.g. IP VPN) both on the data model and instance level.

804

805

Figure 10 IP UNI Access Link

Figure 10 shows the differences between the Basic and Advanced flavors of IpUniAccessLink. They differ in how the Bandwidth profile envelope and IPv4/IPv6 Connection Addressing are specified. Additionally, IpUniAccessLink allows the specification of DHCP relay and BFD attributes. As in the IpUni case - only BasicIaIpUniAccessLink is Internet Access specific. IpUniAccessLink may also be used by other IP products.

Figure 11 Ethernet UNI Access Link Trunk

The Ethernet UNI Access Link Trunk has the same representation in all three Internet Access

814 models. Figure 11 shows its inheritance from IpUniAccessLinkTrunk. MEF 61.1.1 [18] specifies

815 Ethernet UNI Access Link Trunk as the only available implementation of the

816 IpUniAccessLinkTrunk.

818 **11 Order Milestones**

The Service Provider (Seller) can provide Product-Specific Product Order Item Milestone notifications to the Buyer on the status of an Order as a sequence of Milestones for that Order as they are achieved. For ordering an Internet Access Service the following milestones are commonly used (a Service Provider may support some or all these milestones and not all milestones are applicable for all orders).

The Milestone Value in the first column of Błąd! Nie można odnaleźć źródła odwołania. is

included in ProductOrderItem.milestone and ProductOrderEventPayload.milestoneName in the

826 Product Order API (see MEF 123 [28]).

827 Note: Milestones and their notifications are independent of Product Order Item's state.

Milestone Value	Description					k	
		Basic Internet Access	Advanced Internet Access Ipvc	Ip Uni	Ip Uni Access Link	Ethernet Uni Access Link Trun	Exclusive Advanced Internet Access
SITE_SURVEY_SCHEDULED	Site Survey Scheduled	Х				Х	
SITE_SURVEY_COMPLETE	Site Survey Complete	Х				Х	
PLANNING_COMPLETE	Planning Complete	Х	Х	X	Х	Х	Х
FIRM_DELIVERY_DATE_PROVIDED	Firm Delivery Date Provided	Х	Х	Х	Х	Х	Х
AWAITING_MUNICIPAL_APPROVAL	Awaiting Municipal Approval	Х				Х	
MUNICIPAL_APPROVAL_GRANTED	Municipal Approval Granted	Х				Х	
AWAITING_LANDLORD_APPROVAL	Awaiting Landlord Approval	Х				Х	
LANDLORD_APPROVAL_GRANTED	Landlord Approval Granted	Х				Х	
CONSTRUCTION_STARTED	Construction Started	Х				Х	
CONSTRUCTION_COMPLETED	Construction Completed	Х				Х	
AWAITING_ACCESS	Awaiting Site Access Permission (for the end-to-end test)	Х	Х		Х	Х	Х
ACCESS_DENIED	Site Access Denied (for the end-to-end test).	Х	Х		Х	Х	Х
AWAITING_WIRING	Awaiting Installation of Inside Wiring by Landlord	Х				Х	
WIRING_COMPLETE	Installation of Inside Wiring by Landlord Complete	Х				Х	
EQUIPMENT_DISPATCHED	Equipment Dispatched	Х				Х	
EQUIPMENT_DELIVERED	Equipment Delivered	Х				Х	
EQUIPMENT_INSTALLED	Equipment Installed	Х				Х	
E2E_TESTING_SCHEDULED	End-to-End Testing Scheduled	Х	Х		Х	Х	Х
E2E_TESTING_COMPLETED	End-to-End Testing Completed	Х	Х		X	Х	Х
E2E_TESTING_FAILED	End-to-End Testing Failed.	X	X		X	X	X

Table 2 Order Milestones for Internet Access

829 12 Data Models for Internet Access Product

The data models for the Internet Access product configuration are expressed as a set of JSON schemas based on JSON schema draft 7 [1] and encoded in YAML. These schemas accompany this document. This section explains the organization and structure of these schemas.

833 12.1 Organization and Structure of the Schemas

834 The schemas are organized into a file structure as shown in Figure 12.

835

836

Figure 12 Schema Files Organization

There are 3 root product specifications for Internet Access, namely BasicInternetAccess, 837 AdvancedInternetAccessIpvc, and ExclusiveAdvancedInternetAccess. They are specified by 838 schemas in separate dedicated directories and files inside the internetAccess directory. There is 839 also the internetAccessCommon.yaml that holds the definitions of types shared among the Internet 840 Access products. The ipUni directory holds schemas for separately orderable products that are 841 building blocks for Advanced and Exclusive Advanced Internet Access Products, and also the 842 ipUniCommon.yaml. The common directory keeps the definition of types that are shared among 843 other IP services. 844

845 12.2 Additional Details

846 This section includes an explanation of some naming conventions and other patterns used.

847 12.2.1 Naming Conventions

- 848 In the schemas following naming conventions are used:
- class and type names are UpperCamelCase,
- Service Attribute/property names are lowerCamelCase,
- enumeration values are defined using UPPER_SNAKE_CASE.

852 12.2.2 IPVC End Point Service Attribute

⁸⁵³ IPVC End Points are not separately orderable items. They are part of the IPVC. The IPVC End ⁸⁵⁴ Points are the repositories for IPVC Service Attributes that can be different at each UNI, whereas ⁸⁵⁵ the IPVC Service Attributes have the same value at every point in the IPVC. The Internet Access ⁸⁵⁶ information model requires the IPVC to include exactly one IPVC End Point hence there is an ⁸⁵⁷ explicit single attribute defined for IaIpvcCommon: ipvcEndPoint.

Internet Access allows this simplification since it has exactly one IPVC End Point. In the general case of a service that allows an arbitrary number of IPVC End Points (e.g., a multipoint service) or where the external interface types are not predetermined, the IPVC End Points will most likely be modeled as separately orderable products instead of being attributes of the IPVC.

Note that one of the IPVC End Point Service Attributes is IPVC End Point EI Type ([17] section
11.2) which can be "UNI" or "ENNI". Since this information is implicit, this Service Attribute is
not included in the schema for Internet Access but likely would be included for other IP Services.

865 **12.2.3 Identifiers**

866 There are two patterns of identifying objects defined in this document.

For objects that are separately orderable products, there is no explicit Identifier attribute defined. These products are identified by product.id attribute of the ProductOfferingQualificationItem, QuoteItem, or ProductOrderItem of POQ, Quote, Product Order APIs (respectively), and also Product.id in the Product Inventory API. This identifier attribute is set by the Seller. This applies to all defined products. The bracket shows which components the identifier applies to:

- BasicInternetAccess (IPVC)
- AdvancedInternetAccessIpvc (IPVC)
- IpUni (IP UNI)
- IpUniAccessLink (IP UNI Access Link)
- EthernetUniAccessLinkTrunk (Ethernet Uni Access Link Trunk)
- ExclusiveAdvancedInternetAccess (IPVC)

For entities that require to be referenced by other entities that are not separate products, an explicit identifier attribute is provided which is set by the Buyer. This allows the Buyer to specify the relationships prior to identifiers being set by the Seller. This applies to:

881	IaIpvcEndPointCommon, subclassed by:
882	 BasicIaIpvcEndPoint
883	 AdvancedIaIpvcEndPoint
884	IpUniAccessLinkCommon, subclassed by:
885	 BasicIaIpUniAccessLink
886	 IpUniAccessLink
887	IpUniAccessLink as a result may be identified in two ways.
888 889	There are cases where an object has no identifier assigned because it is included in another product structure and can be uniquely identified by the corresponding product.id:
890	• IP UNI used in Basic Internet Access
891	• IP UNI used in Exclusive Advanced Internet Access
892	• Ethernet Uni Access Link Trunk used in Basic Internet Access

13 Relationships Between Entities 893

This section describes the relationships (and their constraints) between the separately orderable 894 products and between the products and places. 895

The use case for Advanced Internet Access is based on purchasing the AdvancedIaIpvc, 896 AdvancedIaUni, and an AdvancedIaUniAccessLink 897

The relationship between separately managed products is captured in the product-agnostic part of 898 the POQ, Quote, and Product Order APIs. The values in the Relationship Type column in the table 899 relationshipType ProductRelationship, below are used in the field of the 900 QualificationItemRelationship, QuoteItemRelationship, and OrderItemRelationship types. 901

The INSTALL/CHANGE column specifies whether the given relation is mandatory or optional to 902 be provided per respective operation. 903

The final column notes if during POQ and Quote, a list of references might be provided or not. 904 The list denotes that a range of related objects is provided to choose from. 905

Source Product	Relationship Type	INSTALL/ CHANGE	Target Product	Cardinali ty	Multiple Allowed at POQ and Quote
Advanced Internet Access IPVC	CONNECTS_T O_IPUNI	Mandatory	IP UNI	1	NO
IP UNI Access Link	PART_OF_IPU NI	Mandatory	IP UNI	1	NO
IP UNI Access Link	CARRIED_OV ER_TRUNK	Mandatory	Ethernet UNI Access Link Trunk	1	NO
Exclusive Advanced Internet Access IPVC	CARRIED_OV ER_TRUNK	Mandatory	Ethernet UNI Access Link Trunk	1	NO

906

Table 3 Product Relationship Roles

- For a product listed in the Source Product column of Table 3, the Relationship [**R16**] 907 Type field of the Product Relationship, POQ Item Relationship, Quote Item 908 Relationship, and Order Item Relationship types MUST contain the 909 corresponding value shown in the Relationship Type column. 910
- For POQ, Quote, and Order, relationships listed in Table 3 MUST be specified [**R17**] 911 for every INSTALL of, or CHANGE to, a product listed in the Source Product 912 column of Table 3. 913
- [**R18**] For a product listed in the Source Product column of Table 3, the relationship 914 **MUST** reference the respective product listed in the Target Product column or 915 an equivalent POQ Item, Quote Item, or Order Item. 916

918 919 **[R19]** For a CHANGE operation to a product listed in the Source Product column of Table 3 the specified relationship **MUST NOT** be changed from the value present in the Product Inventory.

The Ethernet UNI Access Link Trunk is the location-specific component of the Internet Access 920 product. In the case of Basic Internet Access, the Ethernet UNI Access Link Trunk is part of the 921 whole product definition, thus it is the Basic Internet Access product that needs to have a 922 relationship to the location. In Advanced Internet Access cases, the Ethernet UNI Access Link 923 Trunk is a separately orderable product, so the location relation must be set from this product. The 924 Ethernet UNI Access Link Trunk is associated with a specific INSTALL_LOCATION and as 925 noted below, it is required at INSTALL and CHANGE and once it is associated with a specific 926 location, the INSTALL LOCATION cannot be changed. The install location is captured in the 927 product-agnostic part of the POQ, Quote, and Order APIs. The value in the Place Relationship 928 Role column in the table below is used in the role field of the RelatedPlaceRefOrValue type. 929

Product	Place Relationship Role	INSTALL	CHANGE	
Basic Internet Access	INSTALL_LOCATION	Mandatory	Mandatory	
Ethernet UNI Access Link Trunk	INSTALL_LOCATION	Mandatory	Mandatory	

Table 4 Place Relationship Role 930 For Basic Internet Access or Ethernet UNI Access Link Trunk products, the [R20] 931 Role field (role) of the Related Place (RelatedPlaceRefOrValue) type MUST 932 contain the INSTALL_LOCATION value shown in the Place Relationship 933 Role column in Table 4. 934 [R21] For POQ, Quote, and Order, the Related Place (RelatedPlaceRefOrValue) 935 **MUST** be specified for every INSTALL of or CHANGE to a Basic Internet 936 Access or Ethernet UNI Access Link Trunk product. 937 [R22] For a CHANGE to a Basic Internet Access or Ethernet UNI Access Link Trunk 938 product, the Related Place MUST NOT be changed from the value present in 939 the Product Inventory. 940 941

14 Basic vs. Advanced Service Attributes requirements 942

943 There are several Service Attributes defined by MEF 61.1 [17] on which MEF 69.1 [19] puts additional requirements when applying to Basic or Advanced Internet Access definition. This 944 results in some attributes differing from their original definition or missing from the Product 945 Schema specified by this document. 946

These variations are presented for both Basic and Advanced versions, side by side in the tables 947 below (all numbered requirements come from MEF 69.1 [19] and thus the document number is 948 not mentioned each time). This is not a full list of attributes. Only those modified by MEF 69.1 949

[19]are listed. 950

Service Attribute	Basic Internet Access (BasicIaIpvc)	Advanced Internet Access (AdvancedIaIpvc)		
IPVC Identifier	Not present			
	There is no need for an additional Identifier. The IPVC product instance gets the product.id assigned upon creation in the Seller's system, which then can be used for inter-product references.			
IPVC Topology	Not present [R4] IPVC Topology MUST be Clo	oud Access		
IPVC End Point List	[R5] IPVC End Point List MUST h	ave exactly one entry.		
	Single attribute instead of a list: BasicIaIpvc.ipvcEndPoint Ref type: BasicIaIpycEndPoint	Single attribute instead of a list: AdvancedIaIpvc.ipvcEndPoint Ref type: AdvancedIaIpvcEndPoint		
IPVC Packet Delivery	Not present.			
	Not present. Packet Delivery is an enumeration with 2 values: Static Routing and Policy Based Routing. But according to the description " The behavior and requirements when the IPVC Packet Delivery Service Attribute is set to Policy-Based Routing are deferred to a future revision of this specification". That leaves Standard Routing the only available option, so there is no need to specify it.			
IPVC DSCP	[D3] IPVC DSCP Preservation SHOULD be Disabled.			
Preservation	The requirement is stated in the attribute's description.			
IPVC List of Class of	[R7] The IPVC List of Class of Service Names MUST have exactly one entry			
Service Names	Single attribute instead of a list: classOfServiceName			
IPVC Fragmentation	Not present.			
	[R8] IPVC Fragmentation MUST be Enabled.			
	Note: Fragmentation is necessary for an Internet Access Service as the Subscriber has no control over the size of packets received from the Internet. IPVC Fragmentation Enabled ensures the ISP will not discard any packets destined for the Subscriber that exceed the allowable IPVC MTU size.			
IPVC Cloud	Not present.			
Cloud Type	[R9] IPVC Cloud. Cloud Type MUST be Internet Access.			
IPVC Cloud	Not present.			
Cloud Ingress Class of Service Map	[R10] Cloud Ingress Class of Service Map (F, M, D), map M MUST be empty.			
or servicer	[R11] Cloud Ingress Class of Service Map (F, M, D), default CoS name, D, MUST NOT be Discard.			
	When map M is empty, the F has no effect. Additionally, only one Class of Service can be specified, so with R11, that means there is no point in specifying the whole Ingress Class of Service Map.			
IPVC Cloud Cloud DNS Service	[R12] For a Basic InternetFor an Advanced Internet Access Service, a valuAccess Service, Cloud DNSNone for Cloud DNS is not precluded.MUST NOT be None.The requirement is stated in the attribute's description.			

IPVC Cloud Cloud DNS Service	[R13] If the Cloud DNS parameter of the IPVC Cloud Service Attribute is Static, the associated list of DNS Servers MUST have at least one entry.		
	[D4] If the Cloud DNS parameter of the IPVC Cloud Service Attribute is Static, the associated list of DNS Servers SHOULD contain at least two DNS servers.		
	Requirements are stated in the attribute's description.		
IPVC Reserved Prefixes	[R14] IPVC Reserved Prefixes MUST be either empty or free from any public address prefixes.		
	The requirement is stated in the attribute's description.		

951

Table 5 IPVC Service Attributes requirements

Service Attribute	Basic Internet Access (BasicIaIpvcEndPoint)	Advanced Internet Access (AdvancedIaIpvcEndPoint)		
IPVC EP EI	Not present.	Not present.		
	IpUni is a composite of BasicInternetAccess there is no need to use additional references.	IpUni is either a composite of ExclusiveAdvancedInternetAccess and there is no need to use additional references or is referenced on the API level in the case of AdvancedInternetAccessIpvc product		
IPVC EP EI Type	Not present.			
	Always the value of UNI			
IPVC EP Role	Not present.			
	[R16] IPVC EP Role MUST be Root.			
IPVC EP ENNI	Not present.			
Identifier	Not relevant for Internet Access			
IPVC EP Ingress	Not present.			
Class of Service Map	[R17] IPVC Ingress EP Class of Service Map (F, M, D), map M MUST be empty.			
	[R18] IPVC Ingress EP Class of Service Map (F, M, D), default CoS name, D, MUST NOT be Discard.			
	When map M is empty, the F has no effect. Additionally, only one Class of Service can be specified, so with R11, that means there is no point in specifying the whole Ingress Class of Service Map.			
IPVC EP Egress	Type: DscpValue			
Class of Service Map	Since there is only one class of service fo Internet Access there is no need to keep the mapping of Cos names to DSCP Value. If set, the CoS name is explicit hence only the DscpValue is sufficient to provide.			
IPVC EP Ingress	Ref type: BasicIaBwpEnvelope	Ref type: IpvcEpBwpEnvelope		
Envelope	[D5] For a Basic Internet Access Service, the IPVC EP Ingress Bandwidth Profile Envelope SHOULD be None.			
	The requirement is stated in the attribute's description.			
IPVC EP Egress	Ref type: BasicIaBwpEnvelope	Ref type: IpvcEpBwpEnvelope		
Band-width Profile Envelope	[D6] For a Basic Internet Access Service, the IPVC EP Egress Bandwidth Profile Envelope SHOULD be None.			
	The requirement is stated in the attribute's description.			
IPVC EP Prefix	Not present.			
Mapping	[R19] For a Basic Internet Access Service, the IPVC EP Prefix Mapping MUST be Empty.			

952

Table 6 IPVC End Point Service Attributes requirements

Service Attribute	Basic Internet Access (BasicIaIpUni)	Advanced Internet Access (IpUni)	
UNI Identifier	Not present		
	There is no need for an additional Identifier. The IpUni product instance gets the product.id assigned upon creation in the Seller's system, which then can be used for inter-product references		
UNI List of UNI	Not present.	Not present.	
Access Links Service Attribute	IpUniAccessLink is a composite of BasicInternetAccess there is no need to use additional references.	IpUniAccessLink is either a composite of ExclusiveAdvancedInternetAccess and there is no need to use additional references or is referenced on the API level in the case of IpUni product	
UNI Ingress	Ref type: BasicIaBwpEnvelope	Ref type: IpUniBwpEnvelope	
Envelope	[D7] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Ingress Bandwidth Profile Envelope is not None, it SHOULD have Bandwidth Profile Flows that contain all Ingress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1 Table 28).		
	The requirement is stated in the attribute's description.		
UNI Egress	Ref type: BasicIaBwpEnvelope	Ref type: IpUniBwpEnvelope	
Bandwidth Profile Envelope	[D8] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Egress Bandwidth Profile Envelope is not None, it SHOULD have Bandwidth Profile Flows that contain all Egress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1Table 28).		
	The requirement is stated in the attribute's description.		
UNI List of Control Protocols	[D9] At a UNI with an IPVC EP for an Internet Access Service, if the UNI has at least one UNI Access Link where the UNI Access Link IPv4 Connection Addressing is not None, the UNI List of Control Protocols SHOULD include ICMP with a list of applicable ISP IP addresses.		
	[D10] At a UNI with an IPVC EP for an Internet Access Service with at least one UNI Access Link where the UNI Access Link IPv6 Connection Addressing is not None, the UNI List of Control Protocols SHOULD include ICMPv6 with a list of applicable SP IP addresses.		
	The requirement is stated in the attribute's description.		
UNI Routing	Not present.		
Protocols	[R21] At a UNI with an IPVC EP for a Basic Internet Access Service, the UNI Routing Protocols list MUST be empty.		

UNI Reverse Path	[D11] At a UNI with an IPVC EP for an Internet Access Service, UNI Reverse Path
Forwarding	Forwarding SHOULD be Enabled.
	The requirement is stated in the attribute's description.

Table 7 IP UNI Service Attributes requirements

953

954

Service Attribute	Basic Internet Access (BasicIaIpUniAccessLink)	Advanced Internet Access (IpUniAccessLink)
UNI Access Link IPv4 Connection Addressing	[R23] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, UNI Access Link IPv4 Connection Addressing MUST be DHCP or None.	[R22] At a UNI Access Link in a UNI with an IPVC EP for an Advanced Internet Access Service, UNI Access Link IPv4 Connection Addressing MUST be Static or None.
	Ref type: BasicIaUniIpv4ConnectionAddressing does not have the ipv4AddressType attribute, as if the ipv4ConnectionAddressing is set to not null the ipv4AddressType attribute MUST be DHCP	IpUniAccessLink is a type that is shared among other IP Services so it does not contain Internet Access-specific restrictions, thus the requirement is only stated in the attribute's description.
UNI Access Link IPv4 Connection Addressing	[R24] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Access Link IPv4 Connection Addressing is DHCP, the UNI Access Link IPv4 Connection Addressing Secondary Subnet List parameter MUST be empty.	
	Ref type: BasicIaUniIpv4ConnectionAddressing does not have the ipv4SecondarySubnetList attribute.	
UNI Access Link IPv4 Connection Addressing	[R25] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Access Link IPv4 Connection Addressing is DHCP, the UNI Access Link IPv4 Connection Addressing Primary Subnet parameter MUST contain only a single Service Provider IPv4 Address.	
	The requirement is stated in the attribute's description.	
UNI Access Link IPv6 Connection Addressing	[R27] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, UNI Access Link IPv6 Connection Addressing MUST be DHCP or SLAAC or None.	[R26] At a UNI Access Link in a UNI with an IPVC EP for an Advanced Internet Access Service, UNI Access Link IPv6 Connection Addressing MUST be Static or None.
	BasicIaUniIpv6ConnectionAddressing: if not null, the ipv6AddressType attribute only contains possible values: DHCP, SLAAC	IpUniAccessLink is a type that is shared among other IP Services so it does not contain InternetAccess-specific restrictions, thus the requirement is only stated in the attribute's description.

UNI Access Link IPv6 Connection Addressing	 [R28] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Access Link IPv6 Connection Addressing is DHCP or SLAAC, the UNI Access Link IPv6 Connection Address Subnet List parameter MUST contain a single entry. BasicIaUniIpv6ConnectionAddressing: ipv6Subnet is a single attribute instead of a list 	
UNI Access Link IPv6 Connection Addressing	 [R29] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Access Link IPv6 Connection Addressing is DHCP or SLAAC, the UNI Access Link IPv6 Connection Addressing Subnet List parameter MUST contain only a single Service Provider IPv6 Address. The requirement is stated in the attribute's description. 	
UNI Access Link DHCP Relay	Not present. [R30] For a Basic Internet Access Service, where the UNI contains only a single IP Service, the UNI Access Link DHCP Relay MUST be empty.	
UNI Access Link BFD	Not present. [R31] For a Basic Internet Access Service, UNI Access Link BFD MUST be None.	
UNI Access Link Ingress Bandwidth Profile Envelope	Ref type: BasicIaBwpEnvelope[D12] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, UNI Access Link Ingress Bandwidth Profile Envelope SHOULD be None.The requirement is stated in the attribute's description.	Ref type: IpUniAccessLinkBwpEnvelope
UNI Access Link Egress Bandwidth Profile Envelope	Ref type: BasicIaBwpEnvelope[D13] At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access Service, UNI Access Link Egress Bandwidth Profile Envelope SHOULD be None.The requirement is stated in the attribute's description.	Ref type: IpUniAccessLinkBwpEnvelope

UNI Access Link	[D14] At a UNI Access Link in a UNI with	
Reserved VRIDs	an IPVC EP for a Basic Internet Access	
Service Attribute Service, UNI Access Link R		
	VRIDs Service Attribute SHOULD be	
	None.	
	The requirement is stated in the attribute's description.	

955

Table 8 IP UNI Access Link Service Attributes requirements

There is no table for Ethernet Uni Access Link Trunk as it was introduced by MEF 61.1.1 [18] and

for the moment of this standard creation, it is not yet reflected in MEF 69.1 [19] revision so there are no additional requirements to refer to.

959 15 Internet Access Service Attributes

This section provides a guide to the detailed model of the Internet Access product in all flavors. It starts with the model of the top-level product types, then dives into the Service Attributes of the main components (IPVC, IP UNI, IP UNI Access Link, and Ethernet UNI Access Link). Some parts of the data model representing complex technological structures are extracted to their separate subsections of section 16.

Not all MEF 61.1 [17] and MEF 61.1.1[18] Service Attributes are included in the data model. The Service Attributes that are not included are also listed in section 0. Some Service Attributes are not included because they are included in the Product Independent information portion of the API (e.g., many of the Identifiers), and some Service Attributes are not included because they are constants in the context of Internet Access (i.e., can only have one possible value) or are simple attributes instead of lists because the cardinality is restricted to 1.

- In the figures below some classes' attributes or further class structures are skipped for diagram
 readability. This is denoted by the "<<skipped>>" clause.
- For readability on the diagrams the default multiplicity of relations is 1.

Some requirements define Service Attributes as mutually exclusive. This means that either one or the other must be provided, but not two (or more) of them at the same time. This is defined in the schema using the "oneOf" statement in the "required" section of the type definition.

- For example, the IpvcEpBwpEnvelope has 2 attributes: bwpFlowPerCosName and bwpFlowAll, but only one of them must be set at the same time. This part of the schema that defines this requirement looks as follows:
- 980 oneOf:
- 981 required: [bwpFlowPerCosName]
- 982 required: [bwpFlowAll]
- In the following sections, where applicable, this information is provided after the table with theattributes.
- 785 Tables listing the attributes have the following columns:
- Name attribute name as present in the schema file,
- Type the data type of the attribute. All additional constraints are also listed in this column if they are defined in the schema (ex. minItems, maxItems, minimum, etc.)
- 989
 989
 990
 990
 991
 List attributes are designated by square bracket "[]" next to the type name. E.g.
 "Ipv4OrIpv6Prefix[]" means the attribute is a list of objects of type
 "Ipv4OrIpv6Prefix"
- M/O specifies if the attribute is mandatory or optional to provide.
- Description description of the attribute.

It is often the case that an attribut is defined as a list with a maximum number of items equal to 1. 994 This is a patter used to fulfil the case when given attribute has a meaningful value outside of the 995 normal range or data type. E.g. IaIpvcCommon.maximumNumberOfIpv4Routes is an integer 996 attribute limiting the maximum supported number of Ipv4 routes that when not provided means 997 "Unlimited" (see Table 12). Setting an attribute explicitly to an empty list has a different meaning 998 than not providing the value at all, in which case the default value is applied (see 9.2). 999

15.1 **BasicInternetAccess** 1000

- File: /ip/internetAccess/basicInternetAccess/basicInternetAccess.yaml 1001
- URN: urn:mef:lso:spec:cantata-sonata:basic-internet-access:v1.0.0:all 1002

1003

1004

Figure 13 Basic Internet Access product

Figure 13 presents the model of BasicInternetAccess, as specified in basicInternetAccess.yaml. As 1005 described in section 17, it gathers the configuration of all product components (BasicIaIpvc, 1006 BasicIaIpUni, BasicIaIpUniAccessLink, and EthernetUniAccessLinkTrunk) in a single "top-1007 level" product. The details of components are skipped for readability and are described in later 1008 sections (15.4.2, 15.5.3, 15.6.3, and 15.7.2). 1009

Name	Туре	M/O	Description
ipvc	BasicIaIpvc	М	Configuration of Service Attributes for Basic
	Desistatata	м	Configuration of Service Attailutes for Desig
ipUni	BasicialpUni	M	Internet Access IP UNI
ipUniAccessLink	BasicIaIpUniAccessLink	М	Configuration of Service Attributes for Basic
-	_		Internet Access IP UNI Access Link
ipUniAccessLinkTrunk	EthernetUniAccessLinkTr	М	Configuration of Service Attributes for Basic
	unk		Internet Access IP UNI Access Link Trunk

1010

Table 9 BasicInternetAccess

15.2 AdvancedInternetAccessIpvc 1011

- File: /ip/internetAccess/advancedInternetAccessIpvc/advancedInternetAccessIpvc.yaml 1012
- URN: urn:mef:lso:spec:cantata-sonata:advanced-internet-access-ipvc:v1.0.0:all 1013

- 1014 The Advanced Internet Access IPVC is a MEF 69.1 defined version of MEF 61.1 IPVC. Reference:
- 1015 MEF 69.1 Section 9.1 Note that a complete Advanced Internet Access product setup requires also
- 1016 separate ordering of IpUni, IpUniAccessLink, EthernetUniAccessLinkTrunk (Figure 6). In case of
- 1017 Exclusive Advanced Internet Access, the Advanced Internet Access IPVC is part of the "top
- 1018 product" configuration and requires only EthernetUniAccessLinkTrunk to be ordered separately.
- 1019 (Figure 7). Please refer to Figure 15 to see the model diagram.
- 1020 Inherits from: IaIpvcCommon

Name	Туре	M/O	Description
ipvcEndPoint	AdvancedIaIpvcEndPoint	М	Advanced IPVC End Point. Reference - MEF 61.1 Section 10.3. This is
			narrowed to multiplicity = 1 and to AdvancedIaIpvcEndPoint type.
			Reference - MEF 69.1 Section 9.1 [R5]

Table 10 AdvancedInternetAccessIpvc

1022 15.3 ExclusiveAdvancedInternetAccess

1023 File:

 $1024 \qquad /ip/internetAccess/exclusiveAdvancedInternetAccess/exclusiveAdvancedInternetAccess.yaml \\$

1025 URN: urn:mef:lso:spec:cantata-sonata:exclusive-advanced-internet-access:v1.0.0:all

1026

1027

1028

Figure 14 Exclusive Advanced Internet Access product

Figure 14 presents the model of ExclusiveAdvancedInternetAccess, as specified in 1029 exclusiveAdvancedInternetAccess.yaml. As described in section 17, for simplicity it gathers the 1030 configuration of AdvancedInternetAccessIpvc, IpUni, and IpUniAccessLink components in a 1031 single "top-level" product. The details of these components are skipped for readability and are 1032 described in their dedicated sections (15.2.15.5. 15.6). Α reference 1033 to EthernetUniAccessLinkTrunk must be provided on the product level. 1034

Name	Туре	M/O	Description
ipvc	AadvancedInternetAccessIpvc	М	Configuration of Service Attributes for Advanced Internet Access IPVC
ipUni	IpUni	М	Configuration of Service Attributes for IP UNI
ipUniAccessLink	IpUniAccessLink	М	Configuration of Service Attributes for IP UNI Access Link

1035

Table 11 ExclusiveAdvancedInternetAccess

1036 **15.4 IPVC**

1037 1038

Figure 15 IPVC

Figure 15 shows the model of the IPVC. In the case of Internet Access, the list of IPVC End Points
is restricted to having only 1 item, so the IPVC End Point relations are modeled as simple ones.
Also, differences between the Basic and Advanced versions are depicted.

1042 **15.4.1 lalpvcCommon**

- 1043 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- An IP Service is formed of an IP Virtual Connection (IPVC) that links together IPVC End Points
 at External Interfaces (EIs). Reference MEF 61.1 Section 7.4

Name	Туре	M/O	Description
maximumNumberOfIpv4Routes	integer[] minimum = 0 maxItems=1	0	Maximum number of IPv4 routes supported by the service as a whole. Empty listcorresponds to a value of "Unlimited". Reference - MEF 61.1 Section 10.5
maximumNumberOfIpv6Routes	integer[] minimum = 0 maxItems=1	0	Maximum number of IPv6 routes supported by the service as a whole. Empty listcorresponds to a value of "Unlimited". Reference - MEF 61.1 Section 10.6
dscpPreservation	EnabledDisabled	0	Indicates whether the Service Provider is allowed to modify the value of the IP DS field in the IP header of the Subscriber's traffic as it traverses the IPVC. Reference - MEF 61.1 Section 10.7. MEF 69.1 [D3] For an Internet Access Service, IPVC DSCP Preservation SHOULD be Disabled.
classOfServiceName	string	0	The Class of Service Name supported by the IPVC. Reference - MEF 61.1 Section 10.8. This is "listOfClassOfServiceNames" attribute narrowed to single ref per Reference - MEF 69.1 Section 9.1 [R7]
serviceLevelSpecification	IpSls[] maxItems=1	0	The set of performance objectives for CoS Name in the IPVC. Empty list corresponds to the value of None Reference MEF 61.1 Section 10.9
mtu	integer minimum = 576	0	Indicates the maximum size (in octets) of an IP packet that can traverse the IPVC without fragmentation. Reference - MEF 61.1 Section
pathMtuDiscovery	EnabledDisabled	0	Indicates whether the Path MTU Discovery is supported for the IPVC. Reference - MEF 61.1 Section 10.11
cloud	IaIpvcCloud	0	Details of the cloud service being accessed. Reference - MEF 61.1 Section 10.13.
reservedPrefixes	Ipv4OrIpv6Prefix[]	0	Reference - MEF 61.1 Section 10.14. For an Internet Access Service, IPVC Reserved Prefixes MUST be either empty, or free from any public address prefixes. (Reference MEF 69.1 Section 9.1 [R14])

Table 12 IaIpvcCommon

1047 **15.4.2 Basiclalpvc**

- 1048 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- 1049 The Basic Internet Access IPVC is a MEF 69.1 defined version of MEF 61.1 IPVC. Reference:
- 1050 MEF 69.1 Section 9.1: Internet Access IPVC Requirements.
- 1051 Inherits from: IaIpvcCommon

Name	Туре	M/O	Description
ipvcEndPoint	BasicIaIpvcEndPoint	М	Basic IPVC End Point. Reference - MEF 61.1 Section 10.3. This is narrowed to multiplicity = 1 and to BasicIaIpvcEndPoint type. Reference - MEF 69.1 Section 9.1 [R5]

1052

Table 13 BasicIaIpvc

1053 **15.4.3 lalpvcEndPointCommon**

1054 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml

The Advanced Internet Access IPVC End Point is a MEF 69.1 defined version of MEF 61.1 IPVC
 End Point. Reference: MEF 69.1 Section 9.2: Internet Access IPVC End Point Requirements.

Name	Туре	M/O	Description
identifier	IdentifierString	0	IPVC End Point identifier as described in MEF
maximumNumberOfIpv4Routes	integer[] minimum = 0	0	Maximum number of IPv4 routes supported by this IPVC End Point. Reference - MEF 61.1
	maxItems=1		Section 11.7. Empty list corresponds to a value of "Unlimited".
maximumNumberOfIpv6Routes	integer[] minimum = 0 maxItems=1	0	Maximum number of IPv6 routes supported by this IPVC End Point. Reference - MEF 61.1 Section 11.8. Empty list corresponds to a value of "Unlimited".
egressClassOfServiceMap	DscpValue[] maxItems=1	0	DSCP value. Reference - MEF 61.1 Section 11.10

1057

Table 14 IaIpvcEndPointCommon

1058 **15.4.4 BasiclalpvcEndPoint**

1059 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml

1060 The Basic Internet Access IPVC End Point is a MEF 69.1 defined version of MEF 61.1 IPVC End

1061 Point. Reference: MEF 69.1 Section 9.2: Internet Access IPVC End Point Requirements.

1062 Inherits from: IaIpvcEndPointCommon

Name	Туре	M/O	Description
egressBandwidthProfil eEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Egress Bandwidth Profile Envelope for the IPVC End Point. Empty list corresponds to the value of None. Reference - MEF 61.1 Section 11.12. Reference - MEF 69.1 Section 9.2. [D6] For a Basic Internet Access Service, the egressBandwidthProfileEnvelope SHOULD be None.
ingressBandwidthProfi leEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Ingress Bandwidth Profile Envelope for the IPVC End Point. Empty list corresponds to the value of None. Reference - MEF 61.1 Section 11.11. Reference - MEF 69.1 Section 9.2. [D5] For a Basic Internet Access Service, the ingressBandwidthProfileEnvelope SHOULD be None.

1063

Table 15 BasicIaIpvcEndPoint

1064 **15.4.5** AdvancedlalpvcEndPoint

1065 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml

- 1066 The Advanced Internet Access IPVC End Point is a MEF 69.1 defined version of MEF 61.1 IPVC
- 1067 End Point. Reference: MEF 69.1 Section 9.2: Internet Access IPVC End Point Requirements.

1068 Inherits from: IaIpvcEndPointCommon

Name	Туре	M/O	Description
prefixMapping	Ipv4OrIpv6Prefix[]	0	Indicates which IP Prefixes can send and receive traffic to/from the IPVC. Reference - MEF 61.1 Section 11.5
egressBandwidthProfileE nvelope	IpvcEpBwpEnvelope[] maxItems=1	0	Egress Bandwidth Profile Envelope for the IPVC End Point. Empty list corresponds to the value of None. Reference - MEF 61.1 Section 11.12
ingressBandwidthProfileE nvelope	IpvcEpBwpEnvelope[] maxItems=1	0	Ingress Bandwidth Profile Envelope for the IPVC End Point. Empty list corresponds to the value of None. Reference - MEF 61.1 Section 11.11

1069

Table 16 AdvancedIaIpvcEndPoint

1070 **15.4.6 IPVC Cloud**

- 1071 This section groups types modelling the IPVC Cloud.
- 1072 *15.4.6.1 lalpvcCloud*
- 1073 Figure 16 presents a class diagram of IaIpvcCloud
- 1074 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml

1075 The IPVC Cloud Service Attribute is a set of parameters describing the access connectivity to the 1076 cloud service. Reference: MEF 61.1 Section 10.13: IPVC Cloud Service Attribute.

Figure 16 IaIpvcCloud

Name	Туре	M/O	Description
dataLimit	CloudDataLimit[] maxItems=1	0	Limit on the amount of Data traffic sent to/received from the cloud service. Unlimited or a 4-tuple (scdl, Tcdl, ucdl, dcdl). Empty list corresponds to Unlimited. Reference - MEF 61.1 Section 10.13.3
networkAddressTranslation	Ipv4Prefix[] maxItems=1	0	Specifies whether Network Address Translation is used, and if so the IPv4 Prefix. Empty list corresponds to `Disabled`. Reference - MEF 61.1 Section 10.13.4. Reference - MEF 61.1.1 Section 9: [R55] "If the value of the Cloud Type parameter is Internet Access, when and the value of the Cloud NAT parameter is not Disabled, an IPv4 Prefix, then it MUST be a publicly assigned IPv4 Prefix.
dns	CloudDns	0	Specifies whether and how DNS is provided for the service. Reference MEF 61.1 Section 10.13.5. [R12] "For a Basic Internet Access Service, Cloud DNS MUST NOT be null.
subscriberPrefixList	SubscriberPrefixList[] maxItems=1	0	2-tuple containing the list of IP Prefixes and the origin of the IP Prefixes. Reference - MEF 61.1 Section 10.13.6. Reference - MEF 61.1.1 Section 9.

1079

Table 17 IaIpvcCloud

1080 15.4.6.2 CloudDataLimit

1081 File: /ip/common/ipCommon.yaml

MEF W139

- 1082 Specifies an absolute limit on the amount of data the Subscriber can transmit to, or receive from,
- the cloud service in a given time period. It is either Unlimited or a 4-tuple (scdl, tcdl, ucdl, dcdl).
- 1084 Reference: MEF 61.1 Section 10.13.3.

Name	Туре	M/O	Description
startTime	string format = date-time	0	Specifies a start time.
duration	TimeDuration	0	Specifies a duration. Together with the start time, it describes a service of contiguous time intervals, starting at the specified start time and each lasting for the specified duration.
upload	integer minimum = 0	0	An integer indicating a limit, in octets, on the amount of IP traffic that can be transmitted towards the cloud service during each time interval described by startTime and duration.
download	integer minimum = 0	0	An integer indicating a limit, in octets, on the amount of IP traffic received from the cloud service that can be delivered to the Subscriber during each time interval described by startTime and duration.

```
1085
```

Table 18 CloudDataLimit

1086 *15.4.6.3 CloudDns*

1087 File: /ip/common/ipCommon.yaml

Data type representing a Domain Name System. Reference: MEF 61.1 Sn 10.13.5. Reference:
 MEF 69.1 Section 9.1:

- [R12] "For a Basic Internet Access Service, Cloud DNS MUST NOT be None".
- [R13] "For an Internet Access Service, if the Cloud DNS parameter of the IPVC Cloud Service Attribute is STATIC, the associated list of DNS Servers MUST have at least one entry".
- [D4] "For an Internet Access Service, if the Cloud DNS parameter of the IPVC Cloud Service Attribute is STATIC, the associated list of DNS Servers SHOULD contain at least two DNS servers".

Name	Туре	M/O	Description
dnsServerIpList	Ipv4OrIpv6Address[]	0	DNS server IP addresses list. If `dnsType` is STATIC this list must have at least one entry. Otherwise, it must be empty.
dnsType	DnsType	0	Domain Name System type.

1097

Table 19 CloudDns

1098 **15.4.6.4 DnsType**

1099 File: /ip/common/ipCommon.yaml

Enumeration representing the different types of DNS. Reference: MEF 61.1 10.13.5 Cloud DNSService

Value
NONE
DHCP
PPP
STATIC
SLAAC

1102

Table 20 DnsType

- 1103 15.4.6.5 SubscriberPrefixList
- 1104 File: /ip/common/ipCommon.yaml

The value of the Cloud Subscriber Prefix List parameter is None or a 2-tuple (prefixes, origin),
 where:

- prefixes non-empty IP Prefixes 1107 • is a list of public that are used in the Subscriber Network, and 1108
- origin is either SP or Other and indicates whether the IP Prefixes are assigned to the
- 1110 Subscriber by the SP or obtained by the Subscriber from another source.
- 1111 Reference MEF 61.1 Section 10.13.6.
- 1112
- Reference MEF 61.1.1 Section 10.13

Name	Туре	M/O	Description
prefixes	Ipv4OrIpv6Prefix[] minItems = 1	0	Non-empty list of public IP Prefixes that are used in the Subscriber Network
origin	IpPrefixOrigin	0	The origin of the IP Prefixes. Either `SP` or `Other` and indicates whether the IP Prefixes are assigned to the Subscriber by the SP or obtained by the Subscriber from another source.

1113

Table 21 SubscriberPrefixList

- 1114 **15.4.6.6 IpPrefixOrigin**
- 1115 File: /ip/common/ipCommon.yaml
- 1116 Enumeration of possible values of Ip Prefix Origin.
- SP: The prefix(es) have been allocated to the Subscriber by the Service Provider.
- OTHER: The prefix(es) have been allocated to the Subscriber by other source (e.g. another SP or a Regional Internet Registry).

1120

Figure 17 shows the model of the IP UNI and also the differences between the Basic and Advanced versions.

1128 **15.5.1 IpUniCommon**

1129 File: /ip/common/ipCommon.yaml

1130 A User Network Interface (UNI) is the demarcation point between the responsibility of the SP and

the responsibility of the Subscriber. Note that a given UNI always relates to a single SP and a

single Subscriber. Reference - MEF 61.1 Section 12

Name	Туре	M/0	Description
managementType	UniManagementType	0	Attribute indicating whether the CE is the responsibility of the Subscriber or the Service Provider. Reference - MEF 61.1 Section 12.2
listOfControlProtocols	ControlProtocol[]	0	Indication of IP Control Protocols that are not forwarded transparently by the SP. Reference - MEF 61.1 Section 12.6. [D9] At a UNI with an IPVC EP for an Internet Access Service, if the UNI has at least one UNI Access Link where the UNI Access Link IPv4 Connection Addressing is provided, the UNI List of Control Protocols SHOULD include ICMP with a list of applicable ISP IP addresses. [D10] At a UNI with an IPVC EP for an Internet Access Service with at least one UNI Access Link where the UNI Access Link IPv6 Connection Addressing is provided, the UNI List of Control Protocols SHOULD include ICMPv6 with a list of applicable SP IP addresses. Reference - MEF 69.1 Section 9.3
reversePathForwarding	EnabledDisabled	0	Indicates whether Reverse Path Forwarding checks are used by the SP at the UNI. Reference - MEF 61.1 Section 12.8. [D11] At a UNI with an IPVC EP for an Internet Access Service, reversePathForwarding SHOULD be ENABLED. Reference - MEF 69.1 Section 9.3

1133

Table 23 IpUniCommon

1134 **15.5.2 IpUni**

- 1135 File: /ip/ipUni/ipUni.yaml
- 1136 URN: urn:mef:lso:spec:cantata-sonata:ip-uni:v1.0.0:all

1137 Inherits from: IpUniCommon

1138 A User Network Interface (UNI) is the demarcation point between the responsibility of the SP and

the responsibility of the Subscriber. Note that a given UNI always relates to a single SP and a

single Subscriber. Reference - MEF 61.1 Section 12

Name	Туре	M/O	Description
egressBandwidthProfileEnvelope	IpUniBwpEnvelope[] maxItems=1	0	Attribute used for an egress UNI Bandwidth Profile. Reference - MEF 61.1 Section 12.5. Empty list corresponds to the value of None. [D8] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Egress Bandwidth Profile Envelope is provided, it SHOULD have Bandwidth Profile Flows that contain all Egress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1 [8] Table 28). Reference - MEF 69.1 Section 9.3
ingressBandwidthProfileEnvelope	IpUniBwpEnvelope[] maxItems=1	0	Attribute used for an ingress UNI Bandwidth Profile. Reference - MEF 61.1 Section 12.4. Empty list corresponds to the value of None. [D7] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Ingress Bandwidth Profile Envelope is provided, it SHOULD have Bandwidth Profile Flows that contain all Ingress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1 [8] Table 28). Reference - MEF 69.1 Section 9.3
routingProtocols	RoutingProtocols[] maxItems=1	0	List of Routing Protocols used across the UNI. Reference - MEF 61.1 Section 12.7. [R21] "At a UNI with an IPVC EP for a Basic Internet Access Service, the UNI Routing Protocols list MUST be empty."

1141

Table 24 IpUni

1142 **15.5.3 BasiclalpUni**

- 1143 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- The Basic Internet Access IP UNI is a MEF 69.1 defined version of MEF 61.1 IP UNI. Reference:
 MEF 69.1 Section 9.3
- 1146 Inherits from: IpUniCommon

Name	Туре	M/O	Description
egressBandwidthProfileEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Attribute used for an egress UNI Bandwidth Profile. Reference - MEF 61.1 Section 12.5. Empty list corresponds to the value of None. [D8] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Egress Bandwidth Profile Envelope is provided, it SHOULD have Bandwidth Profile Flows that contain all Egress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1 [8] Table 28). Reference - MEF 69.1 Section 9.3
ingressBandwidthProfileEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Attribute used for an ingress UNI Bandwidth Profile. Reference - MEF 61.1 Section 12.4. Empty list corresponds to the value of None. [D7] At a UNI with an IPVC EP for a Basic Internet Access Service, if the UNI Ingress Bandwidth Profile Envelope is provided, it SHOULD have Bandwidth Profile Flows that contain all Ingress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs (as defined in MEF 61.1 [8] Table 28). Reference - MEF 69.1 Section 9.3

1147

Table 25 BasicIaIpUni

1148 **15.5.4 ControlProtocol**

- 1149 File: /ip/common/ipCommon.yaml
- 1150 Data type representing Control Protocol. Each entry consists of a 3-tuple containing the protocol
- name, addressing information (either SP/Operator Addresses or Any) and one or more
- references. Reference MEF 61.1 Section 12.6
- 1153

Name	Туре	M/0	Description
addressing	ControlProtocolAddressing	0	Enumeration representing the addressing.
protocolName	string	0	Protocol name.
reference	string[]	0	Protocol reference.
	minItems = 1		

1154

Table 26 ControlProtocol

1155 15.5.5 ControlProtocolAddressing

- 1156 File: /ip/common/ipCommon.yaml
- 1157 Enumeration representing the Address type for the Control Protocols data 1158 type. Reference: MEF 61.1 Section 12.6

- SP_OPERATOR_ADDRESSES: If the addressing information is SP/Operator Addresses, then Ingress IP Packets for the specified protocol that have a multicast or broadcast destination address, or a unicast destination address that is reachable within the SP's or Operator's network, are considered to be IP Control Protocol Packets, and Egress IP Packets for the specified protocol that have a source address that is reachable within the SP's or Operator's network are considered to be IP Control Protocol Packets.
- ANY: If the addressing information is Any, then all IP Packets for the specified protocol that cross the UNI are considered to be IP Control Protocol Packets.

Value
SP_OPERATOR_ADDRESSES
ANY

Table 27 ControlProtocolAddressing

1168 15.5.6 UniManagementType

- 1169 File: /ip/common/ipCommon.yaml
- Enumeration representing the UNI Management Type options. Indicates whether the CE is the
 responsibility of the Subscriber or the Service Provider. Reference: MEF 61.1 Section 12.2: UNI
 Management Type Service Attribute.
- SUBSCRIBER_MANAGED the CE is managed by the Subscriber, and the UNI Access Links correspond with the IP Attachment Circuits between the CE and the PE
- PROVIDER_MANAGED the CE is managed (logically) by the SP, and the UNI Access Links correspond with the links from the CE to the devices within the Subscriber Network. In this latter case, the IP Attachment Circuits between the CE and the PE are internal to the SP Network.

Value
SUBSCRIBER_MANAGED
PROVIDER_MANAGED

1179

 Table 28 UniManagementType

1180 **15.6 IP UNI Access Link**

1181 1182

Figure 18 IP UNI Access Link

1183 Figure 18 depicts the model of Basic and Advanced IP UNI Access Links and their differences.

1184 15.6.1 IpUniAccessLinkCommon

1185 File: /ip/common/ipCommon.yaml

1186 An individual connection between the Subscriber and the SP that forms part of a UNI. Reference

- ¹¹⁸⁷ MEF 61.1 Section 7.3
- 1188

Name	Туре	M/0	Description
identifier	IdentifierString	0	IPVC UNI Access Link identifier as described in MEF 61.1
			Section 13.1. Note - it is not the same thing as the potential
			Product identifier if IpUniAccessLink is an instance of a Product.
connectionType	ConnectionType	0	Indicates whether the UNI Access Link is point-to-point or
			multipoint.
12Technology	L2Technology	0	Specifies the UNI Access Link Trunk (61.1.1 section A1-1) used
			to carry IP Packets across the UNI along with information needed
			to identify IP Packets for this UNI Access Link.
prefixDelegation	EnabledDisabled	0	Indicates whether DHCP Prefix delegation is enabled. Reference -
			MEF 61.1 Section 13.7
mtu	integer	0	Maximum size, in octets of an IP Packet that can traverse the UNI
	minimum = 576		Access Link. Reference - MEF 61.1 Section 13.9
reservedVrids	Vrid[]	0	List of VRRP (Virtual Router Redundancy Protocol) VRIDs
			(Virtual Router Identifier) reserved for use by the SP or Operator.
			Reference MEF 61.1 Section 13.12

1189

Table 29 IpUniAccessLinkCommon

1190 15.6.2 lpUniAccessLink

- 1191 File: schema/productSchema/ip/ipUni/ipUniAccessLink.yaml
- 1192 URN: urn:mef:lso:spec:cantata-sonata:ip-uni-access-link:v1.0.0:all

1193 An individual connection between the Subscriber and the SP that forms part of a UNI. Reference:

1194 MEF 61.1 Section 7.3: UNIs and UNI Access Link.

1195 Inherits from: IpUniAccessLinkCommon

Name	Туре	M/O	Description
bfd	AccessLinkBfd[] maxItems=1	0	Indication of whether BFD is used on the Uni Access Link. Reference - MEF 61.1 Section 13.8 Empty list corresponds to the value of None.
dhcpRelay	DhcpRelay[] maxItems=1	0	Indicates whether DHCP Relay functionality is enabled. Reference - MEF 61.1 Section 13.6. Empty list corresponds to a value of "Disabled".
egressBwpEnvelope	IpUniAccessLinkBwpEnvelope[] maxItems=1	0	Egress Bandwidth Profile Envelope for the UNI Access Link. Reference MEF 61.1 Section 13.11. Empty list corresponds to the value of None
ingressBwpEnvelope	IpUniAccessLinkBwpEnvelope[] maxItems=1	0	Ingress Bandwidth Profile Envelope for the UNI Access Link. Reference MEF 61.1 Section 13.10. Empty list corresponds to the value of None
ipv4ConnectionAddressing	UniIpv4ConnectionAddressing[] maxItems=1	0	IPv4 Connection Addressing. Reference - MEF 61.1 Section 13.4. Empty list corresponds to the value of None
ipv6ConnectionAddressing	UniIpv6ConnectionAddressing[] maxItems=1	0	IPv6 Connection Addressing. Reference - MEF 61.1 Section 13.5. Empty list corresponds to the value of None

Table 30 IpUniAccessLink

1197 **15.6.3 BasiclalpUniAccessLink**

- 1198 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- The Basic Internet Access UNI Access Link is a MEF 69.1 defined version of MEF 61.1 UNI
 Access Link. Reference MEF 69.1 Section 9.4 Internet Access UNI Access Link Requirements.
- 1201 Inherits from: IpUniAccessLinkCommon

Name	Туре	M/O	Description
egressBwpEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Egress Bandwidth Profile Envelope for the UNI Access Link. Reference - MEF 61.1 Section 13.11. Empty list corresponds to the value of None
ingressBwpEnvelope	BasicIaBwpEnvelope[] maxItems=1	0	Ingress Bandwidth Profile Envelope for the UNI Access Link. Reference - MEF 61.1 Section 13.10. Empty list corresponds to the value of None
ipv4ConnectionAddressing	BasicIaUniIpv4ConnectionAddressing[] maxItems=1	0	IPv4 Connection Addressing. Reference - MEF 61.1 Section 13.4. Empty list corresponds to the value of None
ipv6ConnectionAddressing	BasicIaUniIpv6ConnectionAddressing[] maxItems=1	0	IPv6 Connection Addressing. Reference - MEF 61.1 Section 13.5. Empty list corresponds to the value of None

1202

Table 31 BasicIaIpUniAccessLink

1203 **15.6.4 UNI Access Link BFD**

This section groups types modelling the UNI Access Link Bidirectional Forwarding Detection(BFD)

1206 **15.6.4.1 AccessLinkBfd**

1207 File: /ip/common/ipCommon.yaml

1208

1209 The Access Link BFD Service Attribute indicates whether Bidirectional Forwarding Detection

(BFD) is enabled on the UNI Access Link. Reference MEF 61.1 Section 13.8 and Section 16.5

1211

Name	Туре	M/O	Description
connectionAddressFamily	AddressFamilyIpv4Ipv6Both	0	The Connection Address Family parameter specifies whether the session is established over IPv4 or IPv6 or whether two separate sessions are established using IPv4 and IPv6. Reference - MEF 61.1 Section 13.8 and 16.5
transmissionInterval	integer minimum = 0	0	Transmission Interval Reference - MEF 61.1 Section 13.8 and 16.5
detectMultiplier	integer minimum = 0	0	BFD Detect multiple as an Integer. Reference - MEF 61.1 Section 13.8 and 16.5 Attribute.
activeEnd	BfdActiveEnd	0	BFD Active End. At least one end of BFD session has to have an active role, meaning that it sends out asynchronous control messages regardless of whether it has received any. Reference - MEF 61.1 Section 13.8
authenticationType	BfdAuthenticationType	0	BFD Authentication as described in RFC 5880. Reference - MEF 61.1 Section 13.8 and 16.5

1212

Table 32 AccessLinkBfd

1213 15.6.4.2 AddressFamilylpv4lpv6Both

- 1214 File: /ip/common/ipCommon.yaml
- 1215 Specifies whether the session is established over IPv4 or IPv6 or whether two separate sessions 1216 are established using IPv4 and IPv6.

Value	
IPV4	
IPV6	
BOTH	

1217

Table 33 AddressFamilyIpv4Ipv6Both

- 1218 15.6.4.3 BfdActiveEnd
- 1219 File: /ip/common/ipCommon.yaml

At least one end of the BFD session must have an active role, meaning that it sends out asynchronous control messages regardless of whether it has received any. This enumeration represents the values that can be set for the BFD Active End. Reference: MEF 61.1 Section 13.8: UNI Access Link BFD Service Attribute [R171] and [R172].

- SUBSCRIBER: Subscriber takes active BFD role.
- SP: Service Provider takes active BFD role.
- BOTH: Subscriber and Service Provider take active BFD role.

Value	
SUBSCRIBER	
SP	
BOTH	

Table 34 BfdActiveEnd

- 1228 15.6.4.4 BfdAuthenticationType
- 1229 File: /ip/common/ipCommon.yaml
- Enumeration of possible BFD Authentication Type, as specified by RFC 5880 [9]. In case other than "NONE" is specified additional specific parameters need to be agreed between the Buyer and the Seller.
- NONE: No BFD authentication.
- SIMPLE_PASSWORD: Simple Password Authentication is the most straightforward (and weakest) form of authentication. In this method of authentication one or more Passwords (with corresponding Key IDs) are configured in each system and one of these Password/ID pairs is carried in each BFD Control packet. The receiving system accepts the packet if the Password and Key ID matches one of the Password/ID pairs configured in that system.
 Reference: IETF RFC 5880 [9] Section 6.7.2.
- KEYED_MD5: The Keyed MD5 and Meticulous Key MD5 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more security keys (with corresponding key IDs) are configured in each system. Reference: RFC 5880 [9] Section 6.7.3: Keyed MD5 and Meticulous Keyed MD5 Authentication.
- METICULOUS_KEYED_MD5: The Keyed MD5 and Meticulous Key MD5 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more security keys (with corresponding key IDs) are configured in each system. Reference: RFC 5880 [9] Section 6.7.3: Keyed MD5 and Meticulous Keyed MD5 Authentication.
- KEYED_SHA1: The Keyed SHA1 and Meticulous Key SHA1 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more secret keys (with corresponding key IDs) are configured in each system. Reference: RFC 5880 [9] Section 6.7.4: Keyed SHA1 and Meticulous Keyed SHA1 Authentication.
- METICULOUS_KEYED_SHA1: The Keyed SHA1 and Meticulous Key SHA1 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more secret keys (with corresponding key IDs) are configured in each system. Reference: RFC 5880 [9] Section 6.7.4: Keyed SHA1 and Meticulous Keyed SHA1 Authentication.

Value
NONE
SIMPLE_PASSWORD
KEYED_MD5
METICULOUS_KEYED_MD5
KEYED_SHA1
METICULOUS_KEYED_SHA1

1259

Table 35 BfdAuthenticationType

1260 **15.6.5 ConnectionType**

- 1261 File: /ip/common/ipCommon.yaml
- 1262 An enumeration representing the connection type.
- POINT_TO_POINT indicates that the link is logically point to Point.
- MULTIPOINT indicates the link is logically multipoint.

Value
POINT_TO_POINT
MULTIPOINT

1265

Table 36 ConnectionType

1266 **15.6.6 DhcpRelay**

1267 File: /ip/common/ipCommon.yaml

1268 Dynamic Host Configuration Protocol (DHCP) Relay functionality is useful when the Subscriber

uses DHCP (per RFC 2131 and RFC 8415) in the Subscriber Network but does not want to place

- a DHCP server (or possibly a pair of redundant DHCP servers) in each part of the network.
- 1271 Reference MEF 61.1 Section 13.6

Name	Туре	M/0	Description
dhcpServerList	Ipv4OrIpv6Address[]	0	Non-empty list of IP addresses for DHCP Servers
	minItems = 1		belonging to the Subscriber. Reference - MEF 61.1
			Section 13.6
ipvcEndPointIdentifier	IdentifierString	0	IPVC End Point identifier as described in MEF 61.1
			Section 11.1. In case of Exlusive Advanced Internet
			Access it points to the "identifier" of the IPVC End
			Point that is part of the product configuration. In case of
			Advanced Internet Access it points to the "identifier"
			attribute of the related IPVC End Point of the Advanced
			Internet Access product or an IPVC End Point for a
			different product at the same IP UNI.

1272

Table 37 DhcpRelay

1273 **15.6.7 Vrid**

1274 File: /ip/common/ipCommon.yaml

MEF W139

- 1275 Data type definition: VRID (Virtual Router ID) as defined in RFC 5798 is a number between 1 1276 and 255
- 1277 **15.6.8 Connection Addressing**

Figure 19 IPV4 and IPV6 Connection Addressing

1281 Figure 19 shows both IPv4 and IPv6 versions of Connection Addressing.

1282 15.6.8.1 BasiclaUnilpv4ConnectionAddressing

- 1283 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- Represents how IPv4 addresses are allocated to the devices on the UNI Access Link in case of Basic Internet Access. Reference - MEF 61 Section 13.4
- [R23] "At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access
 Service, UNI Access Link IPv4 Connection Addressing MUST be DHCP or None."
 Reference MEF 69.1 Section 9.4
- [R25] "If IPv4 Connection Addressing is DHCP, the UNI Access Link IPv4 Connection Addressing Primary Subnet parameter MUST contain only a single Service Provider IPv4 Address." Reference - MEF 69.1 Section 9.4

Name	Туре	M/O	Description
ipv4PrimarySubnet	Ipv4PrimarySubnet	0	Primary IPv4 Subnet. Includes IPv4 Prefix and Service
			Provider IPv4 Addresses. [R25] "If IPv4 Connection
			Addressing is DHCP, the UNI Access Link IPv4 Connection
			Addressing Primary Subnet parameter MUST contain only a
			single Service Provider IPv4 Address." Reference - MEF
			69.1 Section 9.4

1292

Table 38 BasicIaUniIpv4ConnectionAddressing

1293 15.6.8.2 Unilpv4ConnectionAddressing

1294 File: /ip/common/ipCommon.yaml

UniIpv4ConnectionAddressing is a data type representing how IPv4 addresses are allocated to the
 devices on the UNI Access Link. Reference - MEF 61 Section 13.4.

 [R22] "At a UNI Access Link in a UNI with an IPVC EP for an Advanced Internet Access Service, UNI Access Link IPv4 Connection Addressing MUST be Static or null." Reference - MEF 69.1 Section 9.4

Name	Туре	M/0	Description
ipv4AddressingType	Ipv4AddressingType	0	IPv4 Connection Addressing.
ipv4PrimarySubnet	Ipv4PrimarySubnet	0	Primary IPv4 Subnet. Includes IPv4 Prefix and
			Service Provider IPv4 Addresses.
ipv4SecondarySubnetList	Ipv4SecondarySubnet[]	0	Secondary IPv4 Subnet List. Includes IPv4 Prefix
	-		and Service Provider IPv4 Addresses.

1300

Table 39 UniIpv4ConnectionAddressing

1301 15.6.8.3 BasiclaUnilpv6ConnectionAddressing

1302 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml

Represents how IPv6 addresses are allocated to the devices on the UNI Access Link in case of
 Basic Internet Access. Reference - MEF 61 Section 13.5

- [R27] "At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access
 Service, UNI Access Link IPv6 Connection Addressing MUST be DHCP or SLAAC or
 null." Reference MEF 69.1 Section 9.4.
- [R29] "At a UNI Access Link in a UNI with an IPVC EP for a Basic Internet Access
 Service, if the UNI Access Link IPv6 Connection Addressing is DHCP or SLAAC, the
 UNI Access Link IPv6 Connection Addressing Subnet List parameter MUST contain only
 a single Service Provider IPv6 Address." Reference MEF 69.1 Section 9.4.
- 1312

Name	Туре	M/O	Description
ipv6AddressType	BasicIaUniIpv6AddressingType	0	Basic Internet Access IPv6 Connection
			Address mechanism
ipv6Subnet	Ipv6Subnet	0	Ipv6 Subnet [R29] "At a UNI Access Link in
			a UNI with an IPVC EP for a Basic Internet
			Access Service, if the UNI Access Link IPv6
			Connection Addressing is DHCP or SLAAC,
			the UNI Access Link IPv6 Connection
			Addressing Subnet List parameter MUST
			contain only a single Service Provider IPv6
			Address." Reference - MEF 69.1 Section 9.4.

1313

Table 40 BasicIaUniIpv6ConnectionAddressing

1314 15.6.8.4 Unilpv6ConnectionAddressing

- 1315 File: /ip/common/ipCommon.yaml
- UniIpv6ConnectionAddressing is a data type representing how IPv6 addresses are allocated to the
 devices on the UNI Access Link. Reference MEF 61 Section 13.5.
- [R26] "At a UNI Access Link in a UNI with an IPVC EP for an Advanced Internet Access
 Service, UNI Access Link IPv6 Connection Addressing MUST be Static or null. Reference
 MEF 69.1 Section 9.4

Name	Type M/C		Description
ipv6AddressingType	Ipv6AddressingType	0	IPv6 Connection Addressing.
subscriberIpv6Address	Ipv6Address	0	Subscriber IPv6 address.
ipv6Subnet	Ipv6Subnet[]	0	Ipv6 Subnet

1321

Table 41 UniIpv6ConnectionAddressing

1322 *15.6.8.5 lpv4AddressingType*

- 1323 File: /ip/common/ipCommon.yaml
- 1324 Enumeration representing IPv4 Address Types specific for UNI Access Links.
- DHCP: Dynamic Host Configuration Protocol (DHCP) is used the Subscriber devices to request IPv4 addresses in a given subnet from the SP or Operator.
- STATIC: IPv4 addresses in a given IPv4 subnet are statically assigned to the SP or Operator and to the Subscriber.
- UNNUMBERED: The SP or Operator and the Subscriber each assigned an IPv4 address (from their own address pools) independently. These addresses can be on different subnets, and so an interface-based routing protocol is needed to ensure reachability.

Value
DHCP
STATIC
UNNUMBERED

1332

Table 42 Ipv4AddressingType

- 1333 15.6.8.6 BasiclaUnilpv6AddressingType
- 1334 File: /ip/internetAccess/internetAccessCommon/internetAccessCommon.yaml
- 1335 Enumeration representing IPv6 Address Types specific for UNI Access Links.
- DHCP: Dynamic Host Configuration Protocol (DHCP) is used by the Subscriber devices
 to request IPv6 addresses in a given subnet from the SP or Operator.
- SLAAC: Stateless Address Autoconfiguration (SLAAC) is used by the Subscriber devices to create unique IPv6 global addresses within an IP Prefix advertised by the SP or Operator as describer in RFC 4862.

Value
DHCP
SLAAC

1341

Table 43 BasicIaUniIpv6AddressingType

- 1342 *15.6.8.7 lpv6AddressingType*
- 1343 File: /ip/common/ipCommon.yaml

- 1344 Ipv6AddressingType
- 1345 Enumeration representing IPv6 Address Types specific for UNI Access Links.
- DHCP: Dynamic Host Configuration Protocol (DHCP) is used by the Subscriber devices to request IPv6 addresses in a given subnet from the SP or Operator.
- SLAAC: Stateless Address Autoconfiguration (SLAAC) is used by the Subscriber devices to create unique IPv6 global addresses within an IP Prefix advertised by the SP or Operator as describer in RFC 4862.
- STATIC: IPv6 addresses in a given IPv6 subnet are statically assigned to the SP or Operator and to the Subscriber.
- LL_ONLY: If the value is LL-only, these are only IPv6 addresses used on the UNI Access
 Link.

I	Value
	DHCP
I	SLAAC
	STATIC
ſ	LL_ONLY

Table 44 Ipv6AddressingType

1356 **15.6.9 L2Technology**

1357 File: /ip/common/ipCommon.yaml

Specifies the UNI Access Link Trunk used to carry IP Packets across the UNI along with
 information needed to identify IP Packets for this UNI Access Link. Reference - MEF 61.1.1
 Section 13.3

Name	Туре	M/O	Description	
demux	VlanId[]	0	Value that is specific to each type of UNI Access Link Trunk and indicates	
			which Layer 2 sub-channel should be selected for this UNI Access Link1	

1361

Table 45 L2Technology

- 1362 **15.6.10 Vlanid**
- 1363 File: /ip/common/ipCommon.yaml
- 1364 Data type used for VLAN id configuration. Defined as a Integer. Value 1 to 4094.

1365 **15.7 Ethernet UNI Access Link Trunk**

1366

1367

Figure 20 EthernetUniAccessLinkTrunk

Figure 20 Shows the diagram of the Ethernet UNI Access Link Trunk. It is the only specified subclass of an abstract class IP UNI Access Link Trunk. It is used by all 3 Internet Access Product

1370 flavors without any changes.

1371 15.7.1 IpUniAccessLinkTrunk

- 1372 File: /ip/ipUni/ipUniCommon.yaml
- A UNI Access Link Trunk is a construct that encapsulates the details of Layer 1 and Layer 2 configuration shared by one or more UNI Access Links. Reference: MEF 61.1.1 Section A1-1. It
- 1375 has no attributes.

1376 15.7.2 EthernetUniAccessLinkTrunk

- 1377 File: /ip/ipUni/ethernetUniAccessLinkTrunk.yaml
- 1378 URN: urn:mef:lso:spec:cantata-sonata:ethernet-uni-access-link-trunk:v1.0.0:all

1379 A single point-to-point physical Ethernet channel or multiple physical Ethernet links combined

into a Link Aggregation Group. The Ethernet frames associated with a given UNI Access Link can

be either untagged/priority-tagged or VLAN tagged. Reference: MEF 61.1.1 A1-1.3 Ethernet UNI

- 1382 Access Link Trunk Service Attributes.
- 1383 Inherits from: IpUniAccessLinkTrunk

Name	Туре	M/O	Description
ethernetPhysicalLink	EthernetPhysicalLink[] minItems = 1	0	A list of the physical link types along with some additional capabilities
ethernetLinkAggregation	UniAccessLinkEthernetLinkAggregation[] maxItems=1	0	Configuration of Link Aggregation for the UNI Access Link Trunk. Empty list corresponds to the value of None.
ethernetLinkOam	EnabledDisabled	0	Indicates whether Link OAM is used on the UNI Access Link Trunk

1384

Table 46 EthernetUniAccessLinkTrunk

- 1385 **15.7.3 EthernetPhysicalLink**
- 1386 File: /ip/common/ipCommon.yaml

1387 Data type representing UNI Access Link Trunk List of Ethernet Physical Links as defined in MEF

1388 61.1.1 Section A1-1.3.1.

Name	Туре	M/O	Description
identifier	IdentifierString	0	Identifier of the Physical LInk
physicalLayer	EthernetPhysicalLayer	0	Enumeration representing the different Ethernet physical
			layers. Reference - MEF 61.1.1 Table A1-4 Ethernet
			PHYs for UNI Access Link Trunks.
synchronousEthernet	SynchronousEthernet	0	Enumeration indicating if the physical link supports
			Synchronous Ethernet.
connectorType	ConnectorType	0	Enumeration representing type of connector presented to
			Subscriber.
gender	Gender	0	Enumeration representing the gender of the connector
			presented to the Subscriber.

Table 47 EthernetPhysicalLink

1390 **15.7.4 ConnectorType**

- 1391 File: /ip/common/ipCommon.yaml
- 1392 Enumeration representing type of connector presented to Subscriber.
- RJ45 Copper. Standard: IEC 60603-7 [1], TIA568 [29]
- SC Fiber. Standard: IEC 61754-4 [2]
- 1395 LC Fiber. Standard: IEC 61754-20 [3]
- OTHER any other connector type

1397

Value
RJ45
SC
LC
OTHER

1398

Table 48 ConnectorType

- 1399 15.7.5 EthernetPhysicalLayer
- 1400 File: /ip/common/ipCommon.yaml
- 1401 Enumeration representing the different Ethernet physical layers. Reference: MEF 61.1.1 Table A1

		10DASE ED
IUBASE_FB	10BASE_FL	IUBASE_FP
10BASE_T	10BASE_TIL	10BASE_TIS
10BASE_TE	10BROAD36	10PASS_TS
100BASE_BX10	100BASE_FX	100BASE_LX10
100BASE_T	100BASE_T1	100BASE_T2
100BASE_T4	100BASE_TX	100BASE_X
1000BASE_BX10	1000BASE_CX	1000BASE_LX
1000BASE_LX10	1000BASE_PX10	1000BASE_PX20
1000BASE_RHA	1000BASE_RHB	1000BASE_RHC
1000BASE_SX	1000BASE_T	1000BASE_T1
1000BASE_X	2_5GBASE_T	2_5GBASE_T1
5GBASE_T	5GBASE_T1	10GBASE_CX4
10GBASE_E	10GBASE_ER	10GBASE_EW
10GBASE_L	10GBASE_LR	10GBASE_LRM
10GBASE_LW	10GBASE_LX4	10GBASE_R
10GBASE_S	10GBASE_SR	10GBASE_SW
10GBASE_T	10GBASE_T1	10GBASE_W
10GBASE_X	25GBASE_CR	25GBASE_CR_S
25GBASE_ER	25GBASE_LR	25GBASE_SR
25GBASE_T	40GBASE_CR4	40GBASE_ER4
40GBASE_FR	40GBASE_LR4	40GBASE_R
40GBASE_SR4	40GBASE_T	50GBASE_CR
50GBASE_ER	50GBASE_FR	50GBASE_LR
50GBASE_SR	100GBASE_CR10	100GBASE_CR2
100GBASE_CR4	100GBASE_DR	100GBASE_ER4
100GBASE_LR4	100GBASE_R	100GBASE_SR10
100GBASE_SR2	100GBASE_SR4	200GBASE_CR4
200GBASE_DR4	200GBASE_ER4	200GBASE_FR4
200GBASE_LR4	200GBASE_SR4	400GBASE_DR4
400GBASE_ER8	400GBASE_FR8	400GBASE_LR8
400GBASE_SR16	400GBASE_SR4_2	400GBASE_SR8

Table 49 EthernetPhysicalLayer

- 1403 **15.7.6 Gender**
- 1404 File: /ip/common/ipCommon.yaml
- 1405 Enumeration representing the gender of the connector presented to the Subscriber.

• SOCKET - Socket

1407 • PLUG - Plug

Value
SOCKET
PLUG

Table 50 Gender

1408

1409 **15.7.7 SynchronousEthernet**

1410 File: /ip/common/ipCommon.yaml

1411 Enumeration indicating if the physical link supports Synchronous Ethernet.

1412 DISBALED - Synchronous Ethernet is disabled on the corresponding physical link.

ESMC - Synchronous Ethernet as defined in ITU-T G.8262/Y.1362 [12] is used on the corresponding physical link with synchronization provided by the Service Provider to the Subscriber. SSM for Synchronous Ethernet using the Ethernet Synchronous Messaging Channel (ESMC) protocol as defined in ITU-T G.8264/Y.1364 [13] is used on the corresponding physical link.

NO ESMC - Synchronous Ethernet as defined in ITU-T G.8262/Y.1362 [12] is used on the corresponding physical link with synchronization provided by the Service Provider to the Subscriber. SSM for Synchronous Ethernet using the Ethernet Synchronous Messaging Channel (ESMC) protocol as defined in ITU-T G.8264/Y.1364 [13] is not used on the corresponding physical link.

I	Value
	DISABLED
	ESMC
	NO_ESMC

1423

Table 51 SynchronousEthernet

- 1424 **15.7.8 UniAccessLinkEthernetLinkAggregation**
- 1425 File: /ip/common/ipCommon.yaml
- Link Aggregation, as described in IEEE Std. 802.1AX-2020 allows one or more parallel instances
- 1427 of full-duplex point-to-point Ethernet links to be aggregated to form a Link Aggregation Group

1428 (LAG) such that the MAC Client (the UNI Access Link) can treat the LAG as if it were a single

1429 link. Reference - MEF 61.1.1 Section A1-1.3.2

Name	Туре	M/0	Description
lacpVersion	LacpVersion	0	The value of LACPv1, LACPv2, or Static and indicates which version of the Link Aggregation Control Protocol, LACP, is used. (See clause 6.4 in IEEE Std 802.1AX-2020 [A1-4].). If the value is Static, LACP is not
portMap	ConversationIdToAggregationLinkMap[]	0	used. A list of 2-tuples <vid, lspl=""> that represents a VLAN ID to Aggregation Link Map (in clause 6.6 of IEEE Std 802.1AX-2020 this is referred to as "Admin_Conv_Link_Map"). The first element, vid, is a VLAN ID, and the second element, lspl, (Link Selection Priority List) is a list of Link Number IDs.</vid,>

1430

Table 52 UniAccessLinkEthernetLinkAggregation

1431 **15.7.9 LacpVersion**

1432 File: /ip/common/ipCommon.yaml

MEF W139

- Indicates which version of the Link Aggregation Control Protocol, LACP, is used. (See clause 6.4 1433
- in IEEE Std 802.1AX-2020 [A1-4].). The possible values are LACPv1, LACPv2, or Static. If the 1434 value is Static, LACP is not used. 1435

Value
LACPV1
LACPV2
STATIC

Table 53 LacpVersion

1436

1437

15.7.10 ConversationIdToAggregationLinkMap

- File: /ip/common/ipCommon.yaml 1438
- This is a 2-tuple where x is a list of Port Conversation IDs or ranges of Port Conversation IDs (a 1439
- Port Conversation ID is a VLAN ID or 0 for untagged frames) and y is a list of Link Numbers. 1440
- This is used in the Port Conversation to Aggregation Link Map for the UNI and ENNI. 1441

Name	Туре	M/O	Description
conversationIDs	ConversationIdRange[]	0	802.1AX-2014 sec. 6.6.2.1 - A Port Conversation
	minItems = 1		ID is a VLAN ID (1 to 4094) or 0 to represent
	uniqueItems = true		untagged and priority-tagged frames.
aggLinkList	integer[]	0	802.1AX-2014 sec. 6.6.2.1 - An ordered list of
	minimum = 1		Aggregation Link Numbers
	minItems = 1		
	uniqueItems = true		

1442

Table 54 ConversationIdToAggregationLinkMap

15.7.11 ConversationIdRange 1443

File: /ip/common/ipCommon.yaml 1444

A range of ConversationID (either a VLAN Id or 0 for untagged frames) 1445

Name	Туре	M/O	Description
start	integer minimum = 0 maximum = 4094	0	The starting Conversation ID of the range or the only Conversation ID if there is no end value
end	integer minimum = 0 maximum = 4094	0	The final Conversation ID in the range

1446

Table 55 ConversationIdRange

16 Ancillary Constructs Service Attributes 1447

This section presents the complex data model structures and sets of data types used in the 1448 modelling of Internet Access Service Attributes. They are put in their separate subsections to 1449 provide more readability. 1450

IP SLS

1451 **16.1**

1452 1453

Figure 21 IpSls

1454 Figure 21 shows the model of the IP SLS with all available metrics.

1455 **16.1.1 IpSIs**

- 1456 File: /ip/common/ipSls.yaml
- 1457 The IPVC Service Level Specification (SLS) describes the performance objectives for the
- 1458 performance of conformant IP Data Packets that flow over the IPVC. The IPVC Service Level
- 1459 Specification Service Attribute is either empty, or a set of three attributes (`startTime`,
- ¹⁴⁶⁰ `periodOfTime`, `locationList`) followed by attributes per every applicable performance metric,
- 1461 providing metric's specific attributes. Reference MEF 61.1 Section 10.9

Name	Туре	M/O	Description
startTime	string format = date-time	0	Start time of IP SLS.
periodOfTime	TimeDuration	0	Period of time over which IP SLS is measured.
locationList	Location[]	0	A Location is associated with one or more IPVC EPs or with a cloud service. A Location can refer to a specific address (such as the SP's premises where the PE is located), a city, a region, or even a country.
oneWayPacketDelayPercentile	OneWayPacketDelayPercentile[]	0	List of SLS Entries for the One-way Packet Delay Percentile metric.
oneWayMeanPacketDelay	OneWayMeanPacketDelay[]	0	List of SLS Entries for the One-way Mean Packet Delay metric.
oneWayInterPacketDelayVariation	OneWayInterPacketDelayVariation[]	0	List of SLS Entries for the One-way Inter-Packet Delay Variation metric.
oneWayPacketDelayRange	OneWayPacketDelayRange[]	0	List of SLS Entries for the One-way Packet Delay Range metric.
oneWayPacketLossRatio	OneWayPacketLossRatio[]	0	List of SLS Entries for the One-way Packet Loss Ratio metric.
serviceUptime	ServiceUptime[]	0	List of SLS Entries for the Service Uptime metric
meanTimeToRepair	MeanTimeToRepair[]	0	List of SLS entries for the Mean Time to Repair metric.

Table 56 IpSls

1463 **16.1.2 OneWayPacketDelayPercentile**

1464 File: /ip/common/ipSls.yaml

The One-way Packet Delay Percentile Performance Metric is the maximum, over all the order pairs of SLS-RPs in a given set S, of the pth percentile of one-way packet delay for Qualified Packets for a given order pair of SLS-RPs, a given CoS Name and a given time period Tk. Reference MEF 61.1 Section 10.9.4

Name	Туре	M/O	Description
cosName	string	0	One of the values in the IPVC List of Class of Service Names
			Service Attribute. Reference - MEF 61.1 Section 10.9.4
slsRpPair	SlsRpPair[]	0	Set of ordered SLS-RP pairs. Reference - MEF 61.1 Section
-	minItems = 1		10.9.4
packetDelayPercentile	Percentage	0	Packet Delay Percentile. Reference - MEF 61.1 Section 10.9.4
packetDelayObjective	TimeDuration	0	Packet Delay Objective. Reference - MEF 61.1 Section 10.9.4

1469

Table 57 OneWayPacketDelayPercentile

1470 16.1.3 OneWayMeanPacketDelay

- 1471 File: /ip/common/ipSls.yaml
- 1472 The One-way Mean Packet Delay Performance Metric is the maximum, over all the ordered pairs
- 1473 of SLS-RPs in a given set S, of the arithmetic mean of one-way packet delay for Qualified Packets
- 1474 for a given ordered pair of SLS-RPs, a given CoS Name, and a given time period Tk. Reference -
- 1475 MEF 61.1 Section 10.9.5

Name	Туре	M/O	Description
cosName	string	0	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference - MEF 61.1 Section 10.9.5
slsRpPair	SlsRpPair[] minItems = 1	0	Set of ordered SLS-RP pairs. Reference - MEF 61.1 Section 10.9.5
meanPacketDelayObjective	TimeDuration	0	Mean Packet Delay Objective. Reference - MEF 61.1 Section 10.9.5, Table-5.

1476

Table 58 OneWayMeanPacketDelay

1477 **16.1.4 OneWayInterPacketDelayVariation**

1478 File: /ip/common/ipSls.yaml

The One-way Inter-Packet Delay Variation Performance Metric is the maximum, over all the ordered pairs of SLS-RPs in a given set S, of the vth percentile of differences between the oneway packet delays of Qualified Packets that arrive at time separated by a given interval tau, for a given ordered pair of SLS-RPs, a given CoS Name, and a given time period Tk. Reference - MEF 61.1 Section 10.9.6

Name	Туре	M/O	Description
cosName	string	0	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference - MEF 61.1 Section 10.9.6
slsRpPair	SlsRpPair[] minItems = 1	0	Set of ordered SLS-RP pairs. Reference - MEF 61.1 Section 10.9.6
packetArrivalTimeDifference	TimeDuration	0	Difference in the time of arrival of packets. Reference - MEF 61.1 Section 10.9.6
interPacketDelayVariationPercentile	Percentage	0	Inter-Packet Delay Variation Percentile. Reference - MEF 61.1 Section 10.9.6
interPacketDelayVariationObjective	TimeDuration	0	Inter-Packet Delay Variation Objective. Reference - MEF 61.1 Section 10.9.6

1484

Table 59 OneWayInterPacketDelayVariation

1485 **16.1.5 OneWayPacketDelayRange**

1486 File: /ip/common/ipSls.yaml

The One-way Packet Delay Range Performance Metric is the maximum, over all the ordered pairs
of SLS-RPs in a given set S, of the difference between the rth percentile of one-way packet delay
and the minimum one-way packet delay, for Qualified Packets for a given ordered pair of SLSRPs, a given CoS Name, and a given time period Tk. Reference - MEF 61.1 Section 10.9.7

Name	Туре	M/0	Description
cosName	string	0	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference - MEF 61.1 Section 10.9.7
slsRpPair	SlsRpPair[] minItems = 1	0	Set of ordered SLS-RP pairs. Reference - MEF 61.1 Section 10.9.7
packetDelayRangePercentile	Percentage	0	Packet Delay Range Percentile. Reference - MEF 61.1 Section 10.9.7
packetDelayRangeObjective	TimeDuration	0	Packet Delay Range Objective. Reference - MEF 61.1 Section 10.9.7

1491

Table 60 OneWayPacketDelayRange

1492 **16.1.6 OneWayPacketLossRatio**

1493 File: /ip/common/ipSls.yaml

The One-way Packet Loss Ratio Performance Metric is the maximum, over the ordered pairs of SLS-RPs in a given set S, of the ratio of lost packets to transmitted packets for a given ordered pair of SLS-RPs, a given CoS Name and a given time period Tk. Reference - MEF 61.1 Section 10.9.8

Name	Туре	M/O	Description
cosName	string	0	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference - MEF 61.1 Section 10.9.8
slsRpPair	SlsRpPair[] minItems = 1	0	Set of ordered SLS-RP pairs. Reference - MEF 61.1 Section 10.9.5
packetLossRatioObjective	Percentage	0	Packet Loss Ratio Objective. Reference - MEF 61.1 Section 10.9.8

1498

Table 61 OneWayPacketLossRatio

1499 **16.1.7 ServiceUptime**

1500 File: /ip/common/ipSls.yaml

The Service Uptime Performance Metric is the proportion of time, during a given time period Tk, that the service is working from the perspective of the Subscriber (for a Subscriber IP Service) or the perspective of the SP/SO (for an Operator IP Service), excluding any pre-agreed exceptions, for example maintenance intervals. Reference - MEF 61.1[1] Section 10.9

Name	Туре	M/0	Description
serviceUptimeObjective	Percentage	0	Service Uptime Objective. Reference - MEF 61.1 Section 10.9.9

1505

Table 62 ServiceUptime

1506 **16.1.8 Percentage**

- 1507 File: /ip/common/ipSls.yaml
- 1508 This is a number of percent a number (not necessarily an integer) between 0 and 100.

1509 **16.1.9 Location**

1510 File: /ip/common/ipSls.yaml

1511 A Location is associated with one or more IPVC EPs or with a cloud service. A Location can refer

to a specific address (such as the SP's premises where the PE is located), a city, a region, or even a country.

Name	Туре	M/O	Description
name	string	0	Location name
description	string	0	Location description
ipvcEndPointIdentifier	IdentifierString[]	0	A list of IPVC End Point identifier as described in MEF
			61.1 Section 11.1.
cloudService	boolean	0	Attribute to indicate if associated with a cloud service.

1514

Table 63 Location

1515 16.1.10 MeanTimeToRepair

1516 File: /ip/common/ipSls.yaml

The Mean Time To Repair Performance Metric is the arithmetic mean of the durations of all
outages that start in a given time period, excluding any pre-agreed maintenance periods. Reference
MEF 61.1.1. Section 10.9.10

Name	Туре	M/O	Description
mttrObjective	TimeDuration	0	Mean Time To Repair Objective

1520

Table 64 MeanTimeToRepair

1521 **16.1.11 SisReferencePoint**

1522 File: /ip/common/ipSls.yaml

A reference SlsReferencePoint which is either a Location.name or IpvcEndPoint.identifier.
 Reference - MEF 61.1 Section 10.9.1.

Name	Туре	M/O	Description
referencedType	SlsReferencePointType	0	The type of referenced SIsReferencePoint. Either a Location or IpvcEndPoint.
identifier	string	0	When referencedType is IPVC_END_POINT then the identifier matches the IpvcEndPoint.identifier. When referencedType is LOCATION then the identifier matches the Location.name

1525

Table 65 SlsReferencePoint

1526 **16.1.12** SIsReferencePointType

- 1527 File: /ip/common/ipSls.yaml
- 1528 Enumeration representing the possible SlsReferencePoint types.
- IPVC_END_POINT The SlsReferencePoint.identifier points to IpvcEndPoint

LOCATION - The SIsReferencePoint.identifier points to Location 1530

Value
IPVC_END_POINT
LOCATION

1531

Table 66 SlsReferencePointType

- 16.1.13 SIsRpPair 1532
- File: /ip/common/ipSls.yaml 1533

Service Level Specification Reference Point Pair. In an IPVC, performance objectives are 1534

specified as applying between pairs of SLS Reference Points, each of which can be an IPVC End 1535 Point or a Location. The SlsRpPair is a representation of this association. Reference MEF 61.1

1536 1001 1 = 0 =

1537	Section 10.9.1	
	-	

Name	Туре	M/O	Description
fromSlsReferencePoint	SlsReferencePoint	0	Pointer to the "from" SLS Reference Point.
toSlsReferencePoint	SlsReferencePoint	0	Pointer to the "to" SLS Reference Point.

1538

Table 67 SlsRpPair

16.2 **Routing Protocols** 1539

1540 1541

Figure 22 Routing Protocols

The UNI Routing Protocols Service Attribute specifies the routing protocols and associated 1542 parameters that are used to exchange IP routes across the UNI. The value is a list of protocols 1543 (possibly empty), where each entry consists of the protocol name (one of Static, OSPF or BGP), 1544 the type of routes that will be exchanged (one of IPv4, IPv6 or Both), and a set of additional 1545

parameters as specified in the subsections below. According to [R109] The value of the UNI
Routing Protocols Service Attribute MUST NOT contain more than one entry for the same
protocol name, except when there are exactly two entries with a given protocol name, one with
route type IPv4 and one with route type IPv6.

1550 16.2.1 RoutingProtocols

1551 File: /ip/common/ipCommon.yaml

1552 Data type to support routing protocols and associated parameters that are used to exchange IP

routes across the UNI. It has three attributes allowing for providing configuration of BGP, OSPF

and Static routing protocols. Reference - MEF 61.1 Section 12.7

Name	Туре	M/O	Description
bgp	RoutingProtocolsBgpOptions[] maxItems=1	0	BGP routing protocol configuration options.
ospf	RoutingProtocolsOspfOptions[] maxItems=1	0	OSPF routing protocol configuration options.
static	Static[] maxItems=1	0	Static routing configuration options.

1555

Table 68 RoutingProtocols

1556 16.2.2 RoutingProtocolsBgpOptions

1557 File: /ip/common/ipCommon.yaml

BGP routing protocol configuration options. The configuration of BGP can be provided for the following type of routes that will be exchanged:

- 1560 ipv4, or
- 1561 ipv6, or
- both (one BGP session exchanging both IPv4 and IPv6), or
- ipv4 and ipv6 (separate BGP session for exchanging IPv4 and IPv6)

Name	Туре	M/O	Description
ipv4	Bgp	0	Configuration for exchanging IPv4 types of routes.
ipv6	Bgp	0	Configuration for exchanging IPv6 types of routes.
both	Bgp	0	Common configuration for exchanging both IPv4 and IPv6 types of routes.

1564

Table 69 RoutingProtocolsBgpOptions

1565 16.2.3 RoutingProtocolsOspfOptions

1566 File: /ip/common/ipCommon.yaml

1567 OSPF routing protocol configuration options. The configuration of OSPF can be provided for the 1568 following type of routes that will be exchanged:

- 1569 ipv4, or
- 1570 ipv6, or

Figure 23 Bgp

- Figure 23 depicts the model of BGP routing protocol configuration model. 1576
- 16.2.4.1 Bgp 1577
- File: /ip/common/ipCommon.yaml 1578
- When an entry in the UNI Routing Protocol is for BGP, BGP as specified in RFC 4271 is used 1579 across the UNI to exchange information. Reference - MEF 61.1 Section 12.7.3. 1580

Name	Туре	M/O	Description
subscriberAsNumber	FourOctetInteger	0	BGP Subscriber Autonomous System
	_		number.
peerAsNumber	FourOctetInteger	0	BGP Peer Autonomous System Number.
connectionAddressFamily	AddressFamilyIpv4Ipv6	0	Connection Address Family (IPv4 or IPv6).
peeringAddresses	PeeringAddress	0	Peering Addresses.
authentication	string[]	0	BGP Authentication. It is either empty or if
	maxItems=1		present is it a value of MD5 Password. It is
			assumed that an encrypted channel is used
			when this data is passed across the API so
			that the password is protected.
bgpCommunityList	BgpCommunity[]	0	Used to control which routers are accepted,
			preferred, distributed, or advertised.
bgpExtendedCommunityList	BgpExtendedCommunity[]	0	Mechanism for labeling information carried
			in BGP-4. Provide enhancement over
			existing BGP Community Attribute an
			extended range, the addition of type field.
holdTime	TwoOctetInteger	0	Hold time in seconds. Indicates the agreed
			Hold Time used for BGP sessions. The
			possible values are 0 or an integer in the
· · ·	D		range 3-65535.
damping	Damping[]	0	Route flap damping. When the Damping
	maxItems=1		parameter is empty, the attribute is not set.
			when not empty a single set of parameters
			MUST he agreed
asOverride	EnabledDisabled	0	Autonomous System Override The SP (or
asovenide	EllabledDisabled	0	Autonomous System Overnue. The SF (of Operator) can overwrite instances of the
			Subscriber's AS Number in the AS Path
			with their own AS Number when
			advertising routes to the Subscriber This
			needs to be explicitly agreed between the
			SP and the Subscriber, and/or between an
			SP/SO and an Operator.
administrativeDistance	integer	0	BGP Administrative Distance.
	minimum = 1		

1581

Table 71 Bgp

16.2.4.2 **BgpCommunity** 1582

- File: /ip/common/ipCommon.yaml 1583
- A community is a group of destinations which share some common property. Each autonomous 1584 system administrator may define which communities a destination belongs to. 1585

Name	Туре	M/0	Description
autonomousSystemNumber	TwoOctetInteger	0	The first two octets encoding the Autonomous System
			value.
autonomousSystemDefined	TwoOctetInteger	0	The remaining octets.
semantics	string	0	Text describing how the Seller will handle routes
	-		tagged with this Community

1586

Table 72 BgpCommunity

1587 16.2.4.3 BgpExtendedCommunity

- 1588 File: /ip/common/ipCommon.yaml
- This attribute provides a mechanism for labeling information carried in BGP-4. These labels can be used to control the distribution of this information, or for other applications.

Name	Туре	M/O	Description
regularType	integer	0	Regular Type Field, 1 octet length
	minimum = 0		
	maximum = 255		
regularValue	integer	0	Octets 2 - 8 of the value part of the address. Used in case only
	minimum = 0		Regular Type is provided.
	maximum =		
	72057594037927935		
extendedType	TwoOctetInteger	0	Extended Type Field, 2 octets length
extendedValue	integer	0	Octets 3 - 8 of the value part of the address. Used in case only
	minimum = 0		Extended Type is provided.
	maximum:		
	281474976710655		
semantics	string	0	Text describing how the Seller will handle routes tagged with
			this Community

Table 73 BgpExtendedCommunity

- 1592 oneOf:
- 1593 required: [regularType, regularValue]
- required: [extendedType, extendedValue]
- 1595 16.2.4.4 AddressFamilylpv4lpv6
- 1596 File: /ip/common/ipCommon.yaml
- 1597 Specifies whether the session is established over IPv4 or IPv6.

Value
IPV4
IPV6

1598

Table 74 AddressFamilyIpv4Ipv6

- 1599 **16.2.4.5 Damping**
- 1600 File: /ip/common/ipCommon.yaml
- 1601 Damping parameters as defined in RFC 2439 BGP Route Flap Damping, Section 4.2

Name	Туре	M/O	Description
cutoffThreshold	integer minimum = 0	0	This value is expressed as a number of route withdrawals. It is the value above which a route advertisement will be suppressed.
decayHalfLifeWhileReachable	integer minimum = 0	0	This value is the time duration in seconds during which the accumulated stability figure of merit will be reduced by half if the route if considered reachable (whether suppressed or not).
decayHalfLifeWhileUnReachable	integer minimum = 0	0	This value is the time duration in seconds during which the accumulated stability figure of merit will be reduced by half if the route if considered unreachable. If not specified or set to zero, no decay will occur while a route remains unreachable.
decayMemoryLimit	integer minimum = 0	0	This is the maximum time (in seconds) that any memory of previous instability will be retained given that the route's state remains unchanged, whether reachable or unreachable. This parameter is generally used to determine array sizes.
maxHoldDownTime	integer minimum = 0	0	This value is the maximum time a route can be suppressed no matter how unstable it has been prior to this period of stability. In seconds.
numberOfReuseLists	integer minimum = 0	0	This is the number of reuse lists. It may be determined from reuse-list-max or set explicitly.
reuseListMemory	integer minimum = 0	0	This is the time (in seconds) value corresponding to the last reuse list. This may be the maximum value of T-hold for all parameter sets of may be configured.
reuseListTimeGranularity	integer minimum = 0	0	This is the time (in seconds) interval between evaluations of the reuse lists. Each reuse lists corresponds to an additional time increment.
reuseThreshold	integer minimum = 0	0	This value is expressed as a number of route withdrawals. It is the value below which a suppressed route will now be used again.
timeGranularity	integer minimum = 0	0	This is the time granularity in seconds used to perform all decay computations.
reuseIndexArraySize	integer minimum = 0	0	This is the size of reuse index arrays. This size determines the accuracy with which suppressed routes can be placed within the set of reuse lists when suppressed for a long time.

Table 75 Damping

1603 16.2.4.6 PeeringAddress

- 1604 File: /ip/common/ipCommon.yaml
- Peering Addresses. Connection Addresses, or Loopbacks plus a list of pairs of IP addresses.Reference MEF 61.1 Section 12.7.3.

Name	Туре	M/O	Description
peeringAddressType	PeeringAddressType	0	If the Peering Addresses parameter is CONNECTION_ADDRESSES, a separate BGP peering session is established over each UNI Access Link, using the primary IPv4 addresses in the UNI Access Link IPv4 Connection Addressing Service Attribute (section 13.4) or the first IPv6 addresses in the UNI Access Link IPv6 Connection Addressing Service Attribute (section 13.5), as indicated by the Connection Address Family parameter. If the Peering Addresses parameter is LOOPBACKS, a list of pairs of IP addresses is additionally specified, each pair containing the Subscriber's loopback address. A single BGP peering session is established for each pair of addresses.
subscriberAndSpLoo pbackAddresses	SubscriberAndSpLoopba ckAddresses[]	0	A list of pairs of IP addresses, each pair containing the Subscriber's loopback address and the SP's or Operator's loopback address. A single BGP peering session is established for each pair of addresses.

1607

Table 76 PeeringAddress

1608 16.2.4.7 PeeringAddressType

1609 File: /ip/common/ipCommon.yaml

If the Peering Addresses parameter is CONNECTION_ADDRESSES, a separate BGP peering 1610 session is established over each UNI Access Link, using the primary IPv4 addresses in the UNI 1611 Access Link IPv4 Connection Addressing Service Attribute (section 13.4) or the first IPv6 1612 addresses in the UNI Access Link IPv6 Connection Addressing Service Attribute (section 13.5), 1613 as indicated by the Connection Address Family parameter. If the Peering Addresses parameter is 1614 LOOPBACKS, a list of pairs of IP addresses is additionally specified, each pair containing the 1615 Subscriber's loopback address and the SP's or Operator's loopback address. A single BGP peering 1616 session is established for each pair of addresses. 1617

CONNECTION_ADDRESSES
LOOPBACKS

1618

Table 77 PeeringAddressType

1619 **16.2.4.8 SubscriberAndSpLoopbackAddresses**

1620 File: /ip/common/ipCommon.yaml

1621 A list of pairs of IP addresses, each pair containing the Subscriber's loopback address and the SP's

1622 or Operator's loopback address. A single BGP peering session is established for each pair of 1623 addresses.

Name	Туре	M/0	Description
subscriberLoopbackAddress	Ipv4OrIpv6Address	0	Subscriber's loopback Address for BGP establishing
spLoopbackAddress	Ipv4OrIpv6Address	0	Service Provider's loopback Address for BGP
	1 1		establishing a session

1624

Table 78 SubscriberAndSpLoopbackAddresses

1625

1626 **16.2.5 OSPF**

C Ospf
deadInterval: integer
areald: integer
retransmissionInterval: integer
areaType: OspfAreaType
helloInterval: integer
authenticationType: OspfAuthenticationType
administrativeDistance: integer

1627

1628

Figure 24 Ospf

Figure 24 Presents the model of OSPF configuration. It consists only of simple attributes and enumerations.

1631 **16.2.5.1 Ospf**

1632 File: /ip/common/ipCommon.yaml

When an entry in the UNI Routing Protocols is for OSPF, OSPF as specified in RFC 2328 (for IPv4) and/or RFC 5340 (for IPv6) is used across each UNI Access Link to exchange routing information. Reference - MEF 61.1 Section 12.7.2.

Name	Туре	M/O	Description
areaId Ipv4Address		0	Area ID expressed as an IPv4 address.
areaType	OspfAreaType	0	OSPF Area Type enumeration.
authenticationType	OspfAuthenticationType	0	OSPF Authentication Type.
helloInterval	TwoOctetInteger	0	Hello interval (0-65535, in seconds)
deadInterval	integer	0	Dead interval (0-429496295, in seconds)
	minimum = 0		
	maximum = 429967295		
retransmissionInterval	integer	0	Retransmit interval (integer greater than 0, in
	minimum = 0		seconds)
administrativeDistance	integer	0	Administrative distance (integer greater than 0)
	minimum = 1		

1636

1637 **16.2.5.2 OspfAreaType**

- 1638 File: /ip/common/ipCommon.yaml
- 1639 OSPF Area Type enumeration. Reference: MEF 61.1 Section 12.7.2
- 1640 NORMAL the Area is not a stub or NSSA (Not So Stubby Area)
- 1641 STUB the Area is a stub
- 1642 NSSA the Area is NSSA (see RFC 3101[7])

Value
NORMAL
STUB
NSSA

1643

Table 80 OspfAreaType

1644 16.2.5.3 OspfAuthenticationType

1645 File: /ip/common/ipCommon.yaml

1646 Enumeration of possible OSPF Authentication Type. In case other than "NONE" is specified 1647 additional specific parameters need to be agreed between the Buyer and the Seller.

- NONE No authentication is used.
- PASSWORD the 64-bit clear password is used which is inserted into the OSPF packet
 header

• MESSAGE_DIGEST - Cryptographic authentication is used as specified in RFC 2828 [6]

Value
NONE
PASSWORD
MESSAGE_DIGEST

1652

Table 81 OspfAuthenticationType

- **Figure 25 Static**
- 1656 Figure 25 shows the resource model for Static routing configuration.

1657 **16.2.6.1 Static**

1658 File: /ip/common/ipCommon.yaml

When an entry in the UNI Routing Protocols list is for Static, the IP Prefixes used in the Subscriber Network that are reachable via this UNI are specified as additional parameters in the entry. These are known as Static IP Prefixes. Reference - MEF 61.1 Section 12.7.1.

Name	Туре	M/0	Description
staticIpEntry	StaticIpEntry[]	0	Static IP address entry.
	minItems = 1		

1662

Table 82 Static

1663 **16.2.6.2 StaticlpEntry**

1664 File: /ip/common/ipCommon.yaml

MEF W139 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

1665 StaticIpEntry data type including IPv4/IPv6 prefixes, forwarding information and administrative 1666 distance.

Name	Туре	M/O	Description
administrativeDistance	integer	0	Administrative distance, an integer > 0 .
	minimum = 1		
forwardingInformation	ForwardingInformation	0	Forwarding information with either Next Hop IP
-			address or UNI Access Link identifier.
staticPrefix	Ipv4OrIpv6Prefix	0	IPv4 or IPv6 Prefix that is advertised.

1667

Table 83 StaticIpEntry

1668 16.2.6.3 ForwardingInformation

- 1669 File: /ip/common/ipCommon.yaml
- 1670 Forwarding information, consisting of either a nexthop IP address in the Subscriber Network (if
- the access medium is multipoint capable, e.g., Ethernet), or a specific UNI Access Link (if the
- access medium is strictly point-to-point, e.g., HDLC, PPP over DSL).

Name	Туре	M/O	Description
nextHopIpAddress	Ipv4OrIpv6Address	0	Next hop IP address.
uniAccessLink	IdentifierString	0	UNI Access Link identifier as set by the Buyer in
			IpUniAccessLink.identifier attribute.

1673

Table 84 ForwardingInformation

- 1674 oneOf:
- 1675 required: [nextHopIpAddress]
- 1676 required: [uniAccessLink]

- 1677 16.3 Bandwidth Profiles
- 1678 16.3.1 Bandwidth Profile Envelopes
- 1679 *16.3.1.1 BasiclaBwpEnvelope*

Figure 26 BasicIaBwpEnvelope

Błąd! Nie można odnaleźć źródła odwołania. shows a simple model of BasicIaBwpEnvelope. It l
 everages MEF 69.1 [19] requirements to Basic Internet Access and simplifies the model,
 comparing to the advanced one.

1685 File: /ip/common/ipCommon.yaml

A single Bandwidth Profile Envelope simplified for the use of Basic Internet Access. For Basic 1686 Internet Access there must always be exactly one Class of Service Name, exactly one IPVC End 1687 Point at the UNI and exactly one UNI Access Link, none of the other options are needed. There 1688 can also be one flow, so the `flowIdentifier` and `weight` are also omitted for the flow. `maxIr` is 1689 omitted from the Envelope - resulting in flattened BasicIaBwpEnvelope class containing four 1690 attributes: the Envelope IR Time `tE`, and the `cir`, `maxIr` and `burstBehavior` for the single 1691 BWP Flow. This special case envelope is used for the UNI, IPVC End Point and UNI Access Links 1692 cases for Basic Internet Access. Reference - MEF 61.1 Section 11.11 1693

Name	Туре	M/O	Description
burstBehavior	BurstBehavior	0	Burst Behavior either Optimize-Delay or Optimize-Throughput.
			Whether the SP is requested to optimize the delay characteristic of
			this flow, or the throughput. Reference - MEF 61.1 Table 29 -
			Bandwidth Profile Parameters for a Bandwidth Profile Flow.
cir	InformationRate	0	Committed Information Rate in bits per second. Average information
			rate of IP Packets that is committed to this BWP Flow. Reference -
			MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth
			Profile Flow.
maxIr	InformationRate	0	Maximum Information Rate in bits per second. Limit on the average
			information rate of IP Packets for this BWP Flow. Reference - MEF
			61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth
			Profile Flow.
tE	integer	0	The Envelope IR Time in milliseconds. This is the time period over
	minimum = 0		which average Information Rates are calculated and thus it limits the
			size of a burst. Reference - MEF 61.1 Section 17.3

1694

Table 85 BasicIaBwpEnvelope

1695 *16.3.1.2 IpBwpEnvelope*

1696 File: /ip/common/ipCommon.yaml

A BWP Envelope is a list of Bandwidth Profile Flows, plus additional parameters for the BWP as a whole. A BWP Envelope is a set of one or more BWP Flows that are associated such that the amount of traffic for one flow can affect the amount that is permitted for another flow. This is an abstract superclass. There are subclasses of IPVC End Point, IP UNI and IP UNI Access Link Envelopes. Reference - MEF 61.1 Section 17.3

Name	Туре	M/O	Description
maxIrE	InformationRate	0	The Envelope Maximum Information Rate in bits per second. This is the
			limit on the total aggregate information rate of traffic across all BWP Flows
			in the Envelope. Reference - MEF 61.1 Section 17.3
tE	integer	0	The Envelope IR Time in milliseconds. This is the time period over which
	minimum = 0		average Information Rates are calculated and thus it limits the size of a
			burst. Reference - MEF 61.1 Section 17.3

1702

Table 86 IpBwpEnvelope

1703 **16.3.1.3 IpvcEpBwpEnvelope**

1704 1705

Figure 27 IpvcEpBwpEnvelope

IPVC End Point Bandwith Profile Envelope extends the IpBwpEnvelope to specify possiblies of
 Flow configurations that can be applied at the IPVC End Point.

1708 File: /ip/common/ipCommon.yaml

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile
specifications. A Bandwidth Profile Envelope can be specified for one of a UNI, a UNI Access
Link, an ENNI Link, or an IPVC End Point. Reference - MEF 61.1 Section 11.11, 11.12.

1712 Inherits from: - IpBwpEnvelope

Name	Туре	M/O	Description
bwpFlowPerCosName	IpBwpFlowPerCosName[]	0	List of BWP flows, each matching one of a set of
	minItems = 1		CoS Names.
bwpFlowAll	IpBwpFlowAll	0	All IP Packets mapped to the IPVC End Point

¹⁷¹³

Table 87 IpvcEpBwpEnvelope

- 1714 oneOf:
- 1715 required: [bwpFlowPerCosName]
- 1716 required: [bwpFlowAll]

MEF W139

Figure 28 IpUniBwpEnvelope

- 1720 IP UNI Bandwidth Profile Envelope extends the IpBwpEnvelope to specify possibilities of Flow 1721 configurations that can be applied at the IP UNI.
- 1722 File: /ip/common/ipCommon.yaml
- A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow specifications. The BWP Flows can be defined per UNI, per IPVC EP, per UNI Access Link, per
- 1725 CosName, etc. Reference MEF 61.1 Sections 12.4, 12.5
- 1726 Inherits from: IpBwpEnvelope

Name	Туре	M/O	Description
bwpFlowPerAccessL ink	IpBwpFlowPerAccessLink[] minItems = 1	0	A list of BWP Flows for IP Packets that are received over one of a given set of UNI Access Links. Reference - MEF 61.1 Section 12.5
bwpFlowPerIpvcEp	IpBwpFlowPerIpvcEp[] minItems = 1	0	A list of BWP Flows that are mapped to any of a given set of IPVC EPs. Reference - MEF 61.1 Section 12.5
bwpFlowPerIpvcEpA ccessLink	IpBwpFlowPerIpvcEpAccessLink[] minItems = 1	0	A list of BWP Flows for IP Packets that are received over one of a given set of UNI Access Links and are mapped to any of a given set of IPVC EPs. Reference - MEF 61.1 Section 12.5
bwpFlowPerIpvcEpA ndCosName	IpBwpFlowPerIpvcEpAndCosName[] minItems = 1	0	A list of BWP Flows that are mapped to any of a given set of (IPVC EP, CoS Name) pairs. Reference - MEF 61.1 Section 12.5
bwpFlowPerAccessL inkIpvcEpAndCosNa me	IpBwpFlowPerAccessLinkIpvcEpAnd CosName[] minItems = 1	0	A list of BWP Flows that are mapped to the UNI Access Link and any of a given set of (IPVC EP, Cos Name) pairs. Reference - MEF 61.1 Section 12.5
bwpFlowAll	IpBwpFlowAll	0	A BWP Flow for all IP Data Packets at the UNI. Reference - MEF 61.1 Section 12.5

1727

Table 88 IpUniBwpEnvelope

- 1728 oneOf:
- required: [bwpFlowPerAccessLink]
- required: [bwpFlowPerIpvcEp]
- required: [bwpFlowPerIpvcEpAccessLink]
- required: [bwpFlowPerIpvcEpAndCosName]
- 1733 required: [bwpFlowPerAccessLinkIpvcEpAndCosName]
- required: [bwpFlowAll]

1735 **16.3.1.5 IpUniAccessLinkBwpEnvelope**

1736

1737

- Figure 29 IpUniAccessLinkBwpEnvelope
- 1738 IP UNI Access Link Bandwidth Profile Envelope extends the IpBwpEnvelope to specify 1739 possibilities of Flow configurations that can be applied at the IP UNI Access Link.
- 1740 File: /ip/common/ipCommon.yaml

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow
 specifications. An Ingress Bandwidth Profile Envelope can be specified for one of a UNI, a UNI
 Access, or an IPVC EP. Reference - MEF 61.1 Section 13.10

1744 Inherits from: IpBwpEnvelope

Name	Туре	M/O	Description
bwpFlowAll	IpBwpFlowAll	0	BWP Flow for all IP
-			Data Packets at the UNI
			that are transmitted or
			received over the UNI
			Access Link.
bwpFlowPerIpvcEp	IpBwpFlowPerIpvcEp[]	0	List of BWP Flows
			matching IPVC End
			Point Identifier(s) for an
			IPVC EP located at the
			UNI Access Link.
bwpFlowPerIpvcEpAndCosName	IpBwpFlowPerIpvcEpAndCosName[]	0	List of BWP Flows
			matching pairs of IPVC
			End Point Identifier and
			CoS Name.

1745

Table 89 IpUniAccessLinkBwpEnvelope

1746 oneOf:

- required: [bwpFlowAll]
- required: [bwpFlowPerIpvcEp]
- required: [bwpFlowPerIpvcEpAndCosName]
- 1750 16.3.2 Bandwidth Profile Flows
- 1751 *16.3.2.1 IpBwpFlow*
- 1752 File: /ip/common/ipCommon.yaml

A Bandwidth Profile Flow is a stream of IP Packets meeting certain criteria. This is an abstract superclass. It has subclasses depending on the criteria used. The criteria than can be used depends

1755 on which BWP Envelope the BWP Flow is a part of. Reference - MEF 61.1 Section 17.2

Name	Туре	M/O	Description
flowIdentifier	integer minimum = 1	0	Identifier for the BWP Flow within the BWP Envelope. Unique integer between 1 and n where n is the number of BWP Flows in the BWP Envelope. Reference - MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
cir	InformationRate	0	Committed Information Rate in bits per second. Average information rate of IP Packets that is committed to this BWP Flow. Reference - MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
maxIr	InformationRate	0	Maximum Information Rate in bits per second. Limit on the average information rate of IP Packets for this BWP Flow. Reference - MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
weight	integer minimum = 0	0	Weight as an integer greater than or equal to 0. Relative weight for this BWP Flow compared to other BWP Flows in the BWP Envelope. Reference - MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
burstBehavior	BurstBehavior	0	Burst Behavior either Optimize-Delay or Optimize-Throughput. Whether the SP is requested to optimize the delay characteristic of this flow, or the throughput. Reference - MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.

1756

Table 90 IpBwpFlow

16.3.2.2 IpBwpFlowAll 1757

- File: /ip/common/ipCommon.yaml 1758
- All IP Data Packets. NOTE: No attributes are needed. 1759
- Inherits from: IpBwpFlow 1760
- 1761 16.3.2.3 IpBwpFlowPerAccessLink
- File: /ip/common/ipCommon.yaml 1762

1763 All Ingress IP Data Packets at the UNI that are received over one of a give set of UNI Access Links. Reference - MEF 61.1 Section 12.5 1764

Inherits from: IpBwpFlow 1765

Name	Туре	M/O	Description
uniAccessLinkIdentifier	IdentifierString[] minItems = 1	0	List of UNI Access Link Identifiers.

1766

Table 91 IpBwpFlowPerAccessLink

16.3.2.4 IpBwpFlowPerAccessLinklpvcEpAndCosName 1767

- File: /ip/common/ipCommon.yaml 1768
- All Ingress IP Data Packets at the UNI that are received over one of a given set of UNI Access 1769
- Links, and that are mapped to the any of a given set of (IPVC EP, Cos Name) pairs. Reference -1770 MEF 61.1 Section 12.4 1771

1772 Inherits from: IpBwpFlow

Name	Туре	M/O	Description
ipvcEpAndCosName	IpvcEpAndCosName [] minItems = 1	0	List of pairs of IPVC End Point Identifier and Class of Service Name. Reference - MEF 61.1 Table 28.
uniAccessLinkIdentifier	IdentifierString[] minItems = 1	0	List of UNI Access Link Identifiers.

Table 92 IpBwpFlowPerAccessLinkIpvcEpAndCosName

1773

1774

16.3.2.5 IpBwpFlowPerlpvcEp

- 1775 File: /ip/common/ipCommon.yaml
- 1776 All Egress/Ingress IP Data Packets at the UNI that are are mapped to any of a given set of IPVC
- 1777 End Points. Reference MEF 61.1 Section 13.10, 13.11
- 1778 Inherits from: IpBwpFlow

Name	Туре	M/0	Description
ipvcEndPointIdentifier	IdentifierString[]	0	List of IPVC End Point Identifiers for IPVC End Points.
	minItems = 1		Reference - MEF 61.1 Table 28.

1779

Table 93 IpBwpFlowPerIpvcEp

1780 16.3.2.6 IpBwpFlowPerlpvcEpAccessLink

1781 File: /ip/common/ipCommon.yaml

All Ingress IP Data Packets at the UNI that are received over one of a given set of UNI Access
 Links and are mapped to one of a given set of IPVC End Points. Reference - MEF 61.1 Section
 12.4

1785 Inherits from: IpBwpFlow

Name	Туре	M/O	Description
ipvcEndPointIdentifier	IdentifierString[]	0	List of IPVC End Point identifiers as described in MEF
	minItems = 1		61.1 Section 11.1.
uniAccessLinkIdentifier	IdentifierString[]	0	List of UNI Access Link Identifiers.
	minItems $= 1$		

1786

Table 94 IpBwpFlowPerIpvcEpAccessLink

1787 **16.3.2.7 IpBwpFlowPerlpvcEpAndCosName**

- 1788 File: /ip/common/ipCommon.yaml
- All Ingress IP Data Packets at the UNI that are mapped to any of a given set of (IPVC EP, CoS
- 1790 Name) pairs. Inherits from: IpBwpFlow

Internet Access Product Schemas and Developer Guide

Name	Туре	M/0	Description
ipvcEpAndCosName	IpvcEpAndCosName[]	0	List of pairs of IPVC End Point Identifier and Class of
	minItems = 1		Service Name. Reference - MEF 61.1 Table 28.

Table 95 IpBwpFlowPerIpvcEpAndCosName

1792 *16.3.2.8 BurstBehavior*

1793 File: /ip/common/ipCommon.yaml

Enumeration used to select the Bandwidth Profile Flow Burst Behavior attribute. Reference: MEF
61.1 Section 17.3: Table 29 Bandwidth Profile Parameters for a Bandwidth Profile Flow.

- OPTIMIZE_DELAY: Enumeration representing the Burst Behavior of optimization of delay.
- OPTIMIZE_THROUGHPUT: Enumeration representing the Burst Behavior of optimization of throughput.

Value
OPTIMIZE_DELAY
OPTIMIZE_THROUGHPUT

1800

Table 96 BurstBehavior

- 1801 16.3.2.9 IpBwpFlowPerCosName
- 1802 File: /ip/common/ipCommon.yaml
- 1803 A Bandwidth for and IPVC End Point with an associated Class of Service identifier.
- 1804 Inherits from: IpBwpFlow

Name	Туре	M/O	Description
cosName	string[]	0	List of Class of Service names.
	minItems = 1		

1805

Table 97 IpBwpFlowPerCosName

1806 16.3.2.10 IpvcEpAndCosName

- 1807 File: /ip/common/ipCommon.yaml
- 1808 Data type representing IPVC End Point Identifier and CoS name use for Bandwidth Profiles.

Name	Туре	M/O	Description
ipvcEndPointIdentifier	IdentifierString	0	IPVC End Point identifier as described in MEF 61.1 Section
-	_		11.1.
cosName	string	0	Class of Service Name.

1809

Table 98 IpvcEpAndCosName

1810 **16.4 IP Addressing**

1811 1812

Figure 30 IP Addressing

- Figure 30 illustrates the model of Ipv4 and Ipv6 addressing. Note that the API schema leverages the OAS embedded ipv4 and ipv6 string formats and uses them to specify the Ipv4Address and Ipv6Address data types that are uses whenever an address value must be provided.
- 1816 **16.4.1 lpv4Address**
- 1817 File: /ip/common/ipCommon.yaml
- 1818 Data type representing Ipv4 address.
- 1819 Format: ipv4
- 1820 **16.4.2 lpv4Prefix**
- 1821 File: /ip/common/ipCommon.yaml
- 1822 Data type representing IPv4 address prefix and mask length between 0 and 31 bits.

Name	Туре	M/O	Description
ipv4Address	Ipv4Address	0	IPv4 address.
prefixLength	integer	0	IPv4 address prefix. Length 0-31.
	minimum = 0		
	maximum = 31		

1823

Table 99 Ipv4Prefix

1824 **16.4.3 Ipv4PrimarySubnet**

1825 File: /ip/common/ipCommon.yaml

IPv4 Subnet used in context of Primary Ipvc subnet. It adds the subscriberIpv4Address attribute
 to the Ipv4SecondarySubnet.

1828 Inherits from: Ipv4SecondarySubnet

Internet Access Product Schemas and Developer Guide

Name	Туре	M/O	Description
subscriberIpv4Address	Ipv4Address[] maxItems=1	0	Subscriber IPv4 Address

Table 100 Ipv4PrimarySubnet

1830 16.4.4 lpv4SecondarySubnet

- 1831 File: /ip/common/ipCommon.yaml
- Data type representing an IPv4 subnet logical partition of an IP network. Included is list of Service
 Provider IPv4 addresses.

Name	Туре	M/O	Description
ipv4Prefix	Ipv4Prefix	0	IPv4 address prefix (IPv4 address prefix and mask length between 0 and 31 in bits).
serviceProviderIpv4Addresses	Ipv4Address[] minItems = 1	0	List of Service Provider IPv4 addresses. [R25] "If IPv4 Connection Addressing is DHCP, the UNI Access Link IPv4 Connection Addressing Primary Subnet parameter MUST contain only a single Service Provider IPv4 Address." Reference - MEF 69.1 Section 9.4
reservedPrefixes	Ipv4Prefix[]	0	List of IPv4 Prefixes, possibly empty

1834

Table 101 SecondarySubnet

- 1835 **16.4.5 Ipv6Address**
- 1836 File: /ip/common/ipCommon.yaml
- 1837 Data type representing IPv6 address.
- 1838 Format: ipv6
- 1839 **16.4.6 Ipv6Prefix**
- 1840 File: /ip/common/ipCommon.yaml

1841 Data type representing IPv6 address prefix and mask length between 0 and 127 in bits.

Name	Туре	M/O	Description
ipv6Address	Ipv6Address	0	IPv6 address.
prefixLength	integer	0	IPv6 address prefix. Length 0-127.
	minimum = 0		
	maximum = 127		

1842

Table 102 Ipv6Prefix

1843 **16.4.7 Ipv6Subnet**

1844 File: /ip/common/ipCommon.yaml

IPv6Subnet is a data type representing an IPv6 subnet logical partition of an IP network. Includedis list of Service Provider IPv6 addresses.

Internet Access Product Schemas and Developer Guide

Name	Туре	M/O	Description
ipv6Prefix	Ipv6Prefix	0	IPv6 Prefix (IPv6 address prefix and mask length
	-		between 0 and 127 in bits).
serviceProviderIpv6Addresses	Ipv6Address[]	0	List of IPv6 Service Provider addresses.
	minItems $= 1$		
reservedPrefixes	Ipv6Prefix[]	0	List of IPv6 Prefixes, possibly empty

1847

Table 103 Ipv6Subnet

1848 16.4.8 lpv4Orlpv6Address

- 1849 File: /ip/common/ipCommon.yaml
- 1850 Data type representing IPv4 or IPV6 address.
- 1851 oneOf:
- 1852 format: ipv4
- 1853 format: ipv6

1854 16.4.9 lpv4Orlpv6Prefix

- 1855 File: /ip/common/ipCommon.yaml
- 1856 IPv4 or IPv6 prefix. Includes subnet address and prefix length.

Name	Туре	M/0	Description
ipv4Prefix	Ipv4Prefix	0	IPv4 prefix.
ipv6Prefix	Ipv6Prefix	0	IPv6 prefix.

1857

Table 104 Ipv4OrIpv6Prefix

- 1858 oneOf:
- 1859 required: [ipv4Prefix]
- 1860 required: [ipv6Prefix]

1861 **16.5 Common Classes**

This section describes classes that are present in the ipCommon.yaml file, yet are not strictly related to IP technology.

- 1864 **16.5.1 EnabledDisabled**
- 1865 File: /ip/common/ipCommon.yaml
- 1866 Enumeration to indicate Enabled/Disabled state of an attribute

Value
ENABLED
DISABLED

Table 105 EnabledDisabled

1868 **16.5.2 IdentifierString**

- 1869 File: /ip/common/ipCommon.yaml
- 1870 Data type used for common identifier string requirements definition.
- 1871 A string; maxLength: 53; pattern: "[x20-x7F]+".

1872 16.5.3 InformationRate

- 1873 File: /ip/common/ipCommon.yaml
- 1874 A value and a unit of measure that specifies an Information Rate.

Name	Туре	M/O	Description
irValue	number	0	The value in the information rate. For example if the information rate is 70
	minimum = 0		kbps this element is 70.
irUnits	IrUnits	0	The unit of measure for the Information Rate. For example if the Information Rate is 70 KBPS this element is KBPS. Note that the values are decimal values. 1 KBPS is 1000 bits per second and 1 MBPS is 1,000,000 bits per second.

1875

Table 106 InformationRate

- 1876 **16.5.4 IrUnits**
- 1877 File: /ip/common/ipCommon.yaml

1878 The unit of measure for the Information Rate. For example if the Information Rate is 70 KBPS

this element is KBPS. Note that the values are decimal values. 1 KBPS is 1000 bits per second and

1880 1 MBPS is 1,000,000 bits per second.

Value
BPS
KBPS
MBPS
GBPS
TBPS
PBPS
EBPS
ZBPS
YBPS

Table 107 IrUnits

1881

1882 **16.5.5 TimeDuration**

1883 File: /ip/common/ipCommon.yaml

1884 This class is used to describe durations expressed as a 2-tuple, (value, units). The units from from 1885 nanoseconds to years.

Name	Туре	M/O	Description
timeDurationValue	integer	0	The value of the duration. For example, if the duration is 20
	minimum = 0		ms, this element is 20.
timeDurationUnits	TimeDurationUnits	0	The unit of measure in the duration. For example, if an
			interval is 2ms, this element is MS.

1886

Table 108 TimeDuration

1887 **16.5.6 TimeDurationUnits**

- 1888 File: /ip/common/ipCommon.yaml
- 1889 The unit of measure in the duration. For example, if an interval is 2ms, this element is MS.

Value
NS
US
MS
SEC
MIN
HOUR
DAY
WEEK
MONTH
YEAR

1890

Table 109 TimeDurationUnits

- 1891 **16.5.7 TwoOctetInteger**
- 1892 File: /ip/common/ipCommon.yaml
- 1893 A two octet integer. Value range 0 65535
- 1894 16.5.8 FourOctetInteger
- 1895 File: /ip/common/ipCommon.yaml
- 1896 A four-octet value range integer 0-4294967295

1897	17	Kel	rerences
1898 1899		[1]	IEC 60603-7, Connectors for electronic equipment - Part 7: Detail specification for 8- way, unshielded, free and fixed connectors, Edition 4.0, October 2020
1900 1901		[2]	IEC 61754-4, Fiber optic interconnecting devices and passive component - Fiber optic connector interfaces - Part 4: Type SC connector family, Edition 2.0, July 2013
1902 1903		[3]	IEC 61754-20, Fiber optic interconnecting devices and passive component - Fiber optic connector interfaces - Part 20: Type LC connector family, Edition 2.0, April 2012
1904 1905 1906 1907		[4]	IETF JSON Schema draft 7, JSON Schema: A Media Type for Describing JSON Documents and associated documents, by Austin Wright and Henry Andrews, March 2018. Copyright © 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
1908 1909		[5]	IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March 1997
1910		[6]	IETF RFC 2828, Internet Security Glossary, May 2000
1911		[7]	IETF RFC 3101, The OSPF Not-So-Stubby Area (NSSA) Option, January 2003
1912		[8]	IETF RFC 4862, IPv6 Stateless Address Autoconfiguration, September 2007
1913		[9]	IETF RFC 5880, Bidirectional Forwarding Detection (BFD), June 2010
1914 1915		[10]	IETF RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, May 2017
1916 1917		[11]	IETF RFC 4271, A Border Gateway Protocol 4 (BGP-4), by Dr. Yakov Rekhter, January 2006. Copyright © The Internet Society (2006). All Rights Reserved.
1918 1919		[12]	ITU-T Recommendation G.8262/Y.1362, Timing characteristics of synchronous Ethernet equipment slave clock, January 2015
1920 1921		[13]	ITU-T Recommendation G.8264/Y.1364, Distribution of timing information through packet networks, May 2014
1922 1923		[14]	MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and Framework, January 2021
1924 1925		[15]	MEF W55.1.1 Amendment to MEF 55.1: Reference Architecture and Framework - Terminology, June 2023
1926		[16]	MEF 57.2 Product Order Management Requirements and Use Cases, October 2022
1927		[17]	MEF 61.1, IP Service Attributes, May 2019

MEP	

Internet Access Product Schemas and Developer Guide

1928 1929	[18]	MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and Mean Time to Repair Performance Metric, July 2022
1930	[19]	MEF 69.1, Subscriber IP Service Definitions, February 2022
1931 1932	[20]	MEF 79, Address, Service Site, and Product Offering Qualification Management, Requirements and Use Cases, November 2019
1933	[21]	MEF 80, Quote Management Requirements and Use Cases, July 2021
1934 1935	[22]	MEF 81, Product Inventory Management, Requirements and Use Cases, November 2019
1936 1937	[23]	MEF 87, LSO Cantata and LSO Sonata Product Offering Qualification Management API - Developer Guide, May 2022
1938 1939	[24]	MEF 106, LSO Sonata Access E-Line Product Schemas and Developer Guide, October 2022
1940 1941	[25]	MEF 115, LSO Cantata and LSO Sonata Quote Management API - Developer Guide, May 2022
1942 1943	[26]	MEF 116, LSO Cantata and LSO Sonata Inventory Management API - Developer Guide, May 2022
1944 1945	[27]	MEF 121, LSO Cantata and LSO Sonata Address Management API - Developer Guide, May 2022
1946 1947	[28]	MEF 123, LSO Cantata and LSO Sonata Product Order Management API - Developer Guide, December 2022
1948 1949	[29]	TIA-568.0-E-2020, Generic Telecommunications Cabling for Customer Premises, March 2020

1950

Appendix A Usage examples (Informative) 1951

- This appendix aims to provide an extensive set of examples to cover: 1952
- 1953 configurations for each Internet Access product
- basic all APIs steps walkthrough to order an Internet Access product 1954 •
- modification use cases 1955
- deletion of products 1956 •
- The full examples are delivered as a Postman collection file available at: 1957
- Appendix 1958 documentation/productSchema/ip/internetAccess/MEF 139 A.postman_collection.json 1959

High-Level flow A.1 1960

The Cantata and Sonata Interface Reference Points are formed from a set of APIs that serve 1961 1962 different functions in the end-to-end flow. Figure 31 shows all of the functions and their sequence.

1963 1964

1965

1966

Figure 31 Cantata and Sonata End-to-End Function Flow

Address Validation - allows the Buyer to retrieve address information from the Seller, • including exact formats, for addresses known to the Seller.

- Site Retrieval allows the Buyer to retrieve Service Site information including exact 1967 formats for Service Sites known to the Seller. 1968
- Product Offering Qualification (POQ) allows the Buyer to check whether the Seller 1969 • can deliver a product or set of products from among their product offerings at the 1970 geographic address or a service site specified by the Buyer; or modify a previously 1971 purchased product. 1972

- Quote allows the Buyer to submit a request to find out how much the installation of an instance of a Product Offering, an update to an existing Product, or a disconnect of an existing Product will cost.
- Product Order allows the Buyer to request the Seller to initiate and complete the fulfillment process of an installation of a Product Offering, an update to an existing Product, or a disconnect of an existing Product at the address defined by the Buyer.
- Product Inventory allows the Buyer to retrieve the information about existing Product instances from Seller's Product Inventory.
- Trouble Ticketing allows the Buyer to create, retrieve, and update Trouble Tickets as well as receive notifications about Incidents' and Trouble Tickets' updates. This allows managing issues and situations that are not part of normal operations of the Product provided by the Seller.

All of the above-mentioned APIs are provided in the SDK together with accompanying Developer
 Guides. Please refer to those documents for more details and examples of particular functional
 APIs.

1988 A.2 Integration of product specifications into the APIs.

The above-mentioned APIs are product-agnostic in the meaning that they serve as a business interaction level between the Buyer and the Seller and they do not contain any product-specific information in their specifications. In order to pass the product-specific information, an extension pattern must be used. This applies to four APIs that carry product-specific information: POQ, Quote, Product Order, and Product Inventory.

The extension hosting type in the API data model is "MEFProductConfiguration". The "@type" attribute of that type must be set to a value that uniquely identifies the product specification (Figure 32). A unique identifier for MEF standard product specifications is in URN format and is assigned by MEF. This identifier is provided as root schema "\$id" and in product specification documentation. In case of Internet Access, this will be one of:

- urn:mef:lso:spec:cantata-sonata:basic-internet-access:v1.0.0:all
- urn:mef:lso:spec:cantata-sonata:advanced-internet-access-ipvc:v1.0.0:all
- urn:mef:lso:spec:cantata-sonata:exclusive-advanced-internet-access:v1.0.0:all
- urn:mef:lso:spec:cantata-sonata:ip-uni:v1.0.0:all
- urn:mef:lso:spec:cantata-sonata:ip-uni-access-link:v1.0.0:all
- urn:mef:lso:spec:cantata-sonata:ethernet-uni-access-link-trunk:v1.0.0:all

Internet Access Product Schemas and Developer Guide

Figure 32 The Extension Pattern

Product specifications are provided as Json schemas without the "MEFProductConfiguration" 2007 context. Product-specific attributes are introduced via the "MEFProductRefOrValue" (defined by 2008 Buyer). This entitv has the "productConfiguration" attribute 2009 the of type "MEFProductConfiguration" which is used as an extension point for product-specific attributes. 2010 The example result of such binding in a request may look like this (for POQ): 2011

MEF W139

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

2035 **A.3** action: add

This section guides through all the steps of Sonata and Cantata APIs that need to be performed in order to successfully order an Internet Access product.

2038 Note: Sellers are free to mandate some of these steps.

As the examples of particular steps in many cases will replicate the product-specific information, in some of the snippets some parts of it will be omitted for better readability.

- 2041 There are common rules for all request items for creation requests (POQ, Quote, Order):
- "item.action" must be set to "add"
- "item.product.id" must not be provided
- "product.productConfiguration" must contain all desired configurations.

2045 A.3.1 Use Case 1: Address Validation

For detailed guidance on how to use the Address Validation API, please refer to MEF 121 [27]

The first step of the process is the Address Validation. The aim of this step is to align the address 2047 representation between the Buyer and the Seller. This is to overcome the very common problem 2048 of different address representation in various countries and systems. The Buyer sends a 2049 representation of the address that is intended to be used in further steps (most likely an installation 2050 place). The question is "Dear Seller - do you recognize and understand this address?". 2051 Additionally, the Buyer may also ask the Seller to provide alternatives if there is no clear match. 2052 The Seller provides a response where in the "bestMatchGeographicAddress" (if found) a matching 2053 address is provided with an id that can be used in further steps to avoid the need for Address 2054 resolution. 2055

- Note: It is not mandatory for the Seller to provide the Id of the returned Address, yet it is recommended.
- Note: The Seller's response might come with some enhancements in the Address. It is up to the Seller's discretion what makes the best match and an alternative.

The Buyer in the request places one of 4 possible representations of the Address (FieldedAddress, FormattedAddress, MEFGeographicPoint, or GeographicAddressLabel). The following Figure and snippet present an example request:

Figure 33 UC1: Address Validation request

2065 Example Address Validation Request:

```
{
2066
         "provideAlternative": true,
2067
         "submittedGeographicAddress": {
2068
           "@type": "FieldedAddress",
2069
           "streetNr": "20",
2070
           "streetNrSuffix": "14",
2071
           "streetName": "Example",
2072
           "city": "Budapest",
2073
           "postcode": "10279",
2074
           "country": "Hungary"
2075
         }
2076
       }
2077
```

In the response, the Seller repeats the submitted address for reference and populates the "bestMatchGeographicAddress" and/or the "alternateGeographicAddress". In the example, the Seller matches the best match address, which has a little more details than the one in the request. The Seller also provides the address id ("BudapestAddress-id-1") that the Buyer will refer to in later steps.

Note: The identifiers will most likely be some kind of technical ids to provide uniqueness. In all examples, the identifiers are shortened and made human-readable to make it easier to read and match across the use cases.

		@type	FieldedAddress		
		id	BudapestAddres	s-id-1	
		href	{{baseUrl}}/geog	aphicAddress/Budap	estAddress-id-1
		allowsNewSite	true	· · ·	
		hasPublicSite	true		
		streetNr	20		
		streetName	Example		
		streetType	st.		
		city	Budapest		
provideAlternative	true	stateOrProvince	Budapest		
bestMatchGeographicAddress	•)	postcode	10279		
submittedGeographicAddress	•	country	Hungary		
<u>_</u>					
			@type	FieldedAddress	

•••	@type	FieldedAddress
	streetNr	20
	streetNrSuffix	14
	streetName	Example
	city	Budapest
	postcode	10279
	country	Hungary

2087 Figure 34 UC1: Address Validation response 2088 2089 Seller's response: { 2090 "provideAlternative": "true", 2091 2092 "bestMatchGeographicAddress": { "@type": "FieldedAddress", 2093 "id": "BudapestAddress-id-1", 2094 "href": "{{baseUrl}}/geographicAddress/BudapestAddress-id-1", 2095 "allowsNewSite": "true", 2096 2097 "hasPublicSite": "true", "streetNr": "20", 2098 "streetName": "Example", 2099 "streetType": "st.", 2100 "city": "Budapest", 2101 "stateOrProvince": "Budapest", 2102 "postcode": "10279", 2103 "country": "Hungary" 2104 2105 }, "submittedGeographicAddress": { 2106 "@type": "FieldedAddress", 2107 "streetNr": "20", 2108 "streetNrSuffix": "14", 2109 "streetName": "Example", 2110 "city": "Budapest", 2111

MEF W139


```
2112 "postcode": "10279",
2113 "country": "Hungary"
2114 }
```

2115 }

2116 A.3.2 Use Case 2: POQ - Basic Internet Access

For detailed guidance on how to use the Product Offering Qualification (POQ) API, please refer to MEF 87 [23]

The Product Offering Qualification step is designed for the Buyer to ask the question "Dear Seller, are you able to provide a certain product (based on "productOffering") with specific configuration (provided as "productConfiguration") at a given location"? The Seller responds with one of qualification confidences:

- green The Seller has high confidence that this Product can be delivered,
- yellow The Seller believes they can deliver the Product but is not highly confident,
- red The Seller cannot deliver the Product as specified.

In case of yellow or red, the Seller may additionally return (if requested) an alternative Product
 Offering, that might alternatively fulfill the Buyer's needs.

It is very important to understand the pattern of integrating the product-specific configuration with the functional product-agnostic API like POQ. As explained in chapter 10 the Internet Access product model is composed of 4 elements:

- IPVC (incl. IPVC End Point)
- 2132 IP UNI
- IP UNI Access Link
- IP UNI Access Link Trunk

A topology diagram is presented in Figure 35. All 4 components are additionally labeled and covered with a single grey rectangle to designate they are all covered by single Basic Internet Access product configuration.

Figure 35 Basic Internet Access Topology

Depending on version (Basic, Advanced, Exclusive), they are either aggregated into one single product definition or managed separately. This maps to a POQ request having one POQ item for Basic, four POQ items for Advanced or two POQ Items in Exclusive Advanced case. This will be covered by examples in this and subsequent sections.

The information about one single product is carried within the POQ API by a single "productOfferingQualificationItem" being a subject to qualification. One POQ Request can carry more than one POQ Items, that may or may not be related to each other.

- 2147 There are 2 ways to reference products:
- existing Products present in the Product Inventory at the moment of issuing the request, to which the Buyer has the "product.id". These must be referenced by "productOffer-ingQualificationItem.product.productRelationship" with appropriate "product.id" and "relationshipType". Product Specification defines what relationship
 types must be used during referencing other products. E.g. the Advanced Internet Access IPVC points to the IP UNI product with the "relationshipType" value: "CONNECTS_TO_IPUNI" (as specified in Chapter 13).
- newly created or modified products the ones being created or modified by other POQ
 Item in the same POQ request, so there is a relation between the Items within a POQ.
 These must be referenced using the "productOfferingQualificationItem.
 qualificationItemRelationship" by the target Item "id" and the "relationshipType".
- All configurations presented by Use Cases 2 to 6 base on this topology. The attribute values are taken from MEF 61.1[17], section C.3. and applied minimum required changes.

In this use case the Basic Internet Access aggregates all components' configuration into a single product with four main attributes keeping respective configurations. Thus, there is only one POQ

Item. Model diagram is presented in Figure 36 to remind the structure of Basic Internet Access.

2164

2165 Figure 36 Information model for Basic Internet Access product

The outer rectangle represents the coverage of single product specification.

An instance diagram in Figure 37 shows an extracted part from the request, to present the most important attributes.

2170

2169

Figure 37 UC2: POQ Request, product-agnostic part

2171 The green color highlights key aspects:

- there is only one productOfferingQualificationItem
- the type of the product is Basic Internet Access: urn:mef:lso:spec:cantata-sonata:basic internet-access:v1.0.0:all

- the configuration of building components in stored a simple attribute values
 (<<skipped>> for the sake of readability)
- since it the is only one product it also holds the relation to install location
- 2178 Figure 38 shows the IPVC configuration:

Figure 38 UC2: IPVC configuration

- 2181 There is one Best-effort class of service defined, one SLS metric: serviceUptime, and one IPVC
- 2182 End Point with identifier: IPVCEP.Budapest.66.1.
- 2183 Figure 39 shows IP UNI product configuration:

2184 2185

Figure 39 UC2: IP UNI configuration

- This UNI has ICMP and DHCP control protocols enabled and best effort maximum bandwidth of 100 MBPS with no committed information rate.
- 2188 Figure 40 presents the IP UNI access Link product configuration:

2190

Figure 40 UC2: IP Uni Access Link configuration

The demux has no value provided, which means UT/PT is used. The value UT/PT refers to untagged and priority tagged frames and when set that means that the UNI Access Link Trunk must not be used for any other UNI Access Link. This is the case for the Basic Internet Access, where all resources are dedicated to single IPVC. ipv6ConnectionAddressing is using DHCP explicitly. The ipv6ConnectionAddressing is also using DHCP, yet implicitly. This by the rule that if set, the it must be DHCP. If IPv4 was not used on this UNI Access link, then it would have been provided as an empty list.

physicalLayer 1000BASE_SX	
ethernetPhysicall ink	
ethernetLinkAggregation •	
ethernetlinkOam DISABLED gender SOCKET	

2198 2199

Figure 41 UC2: IP Uni Access Link Trunk configuration

Figure 41 shows IP UNI access Link Trunk part configuration specifying a single ethernet connection with a 1000BASE_SX interface.

2202 A.3.3 Use Case 3: POQ - Advanced Internet Access

The Advanced Internet Access is built from same components as the Basic one. The difference is that in Advanced case all of them are managed separately, can be ordered separately and the cardinality of the relations between them is not restricted to only one, thus they can serve more products (following relations cardinalities defined in section 13).

A topology diagram is presented in Figure 42. All four components are now covered be separate rectangles to underline that each of them is now a different product.

Figure 42 Advanced Internet Access topology

2211 The example provided in request collection attached to this document covers topology using single

cardinalities that is similar to the topology of Use Case 2. This is to pinpoint the differences

between them.

The greatest difference is the structure of the request, as presented in Figure 43. Now there four

distinct POQ items each carrying respective product configuration, having own URN, and

specifying relations between them. Note also that the place relationship is now defined by Ethernet

2217 UNI Access Link Trunk.

2218 2219

Figure 43 UC3: POQ Request, product-agnostic part

MEF W139 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain Page 116 the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

Figure 44 present a diagram of the Advanced Internet Access IPVC product configuration. The only difference comparing to the Basic one is the presence of the @type and the ipvcEndPoint.prefixMapping attribute, which in this use case is an empty list. Please refer to Table 5 and **Błąd! Nie można odnaleźć źródła odwołania.** which list the details of all discrepancies between the Basic and Advanced versions.

Internet Access Product Schemas and Developer Guide

2245 2246

Figure 46 UC3: IP UNI Access Link configuration

As shown in Figure 47 the configuration of Ethernet UNI Access Link Trunk is the same as in the Basic use case. The only difference is the presence of the @type.

2250

Figure 47 UC3: IP UNI Access Link Trunk configuration

Figure 48 recaps the relations' names and cardinalities. It will help to understand more complex scenario presented in Figure 49

2253 2254

Figure 48 Information model for Advanced Internet Access product

An example topology using these cardinalities in presented on Figure 49. Here the Internet Access IPVC has an End Point that connects to IP UNI 2. This IP UNI 2 consists of two IP UNI Access Links. One of them is provided by Ethernet UNI Access Link Trunk 1 with use of VLAN ID = 66 and the other one is exclusively provided by Ethernet UNI Access Link 2 that is using LAG.

and the other one is exclusively provided by Ethernet UNI Access Link 2 that is using LAG

There is also an IP VPN Product that has 2 End Points, one per UNI. First End Point connects to UNI 1 that consist only of one IP UNI Access Link that is provided by Ethernet UNI Access Link 1 with use of VLAN ID = 55. The second End Point of the IP VPN connects to same UNI 2 as the one of IPVC.

Figure 49 Complex topology example of Advanced Internet Access

2265 A.3.4 Use Case 4: POQ - Exclusive Advanced Internet Access

The Exclusive version of the Advanced Internet Access aims to cover the presumed most common use case when the IP UNI and the IP UNI Access Link are used exclusively by one IPVC. This allows to aggregate IPVC, IP UNI and IP UNI Access Links thus reducing the number of items needed to be ordered.

A topology diagram is presented in Figure 50. Three components are covered by common rectangle (IPVC, IP UNI, and IP UNI Access Link) and ordered as one product. Ethernet UNI Access Link is covered by separate rectangle to underline that it is ordered separately and can be shared by multiple IP Uni Access Links being part of Exclusive Internet Access or an Advanced Internet Access products.

Figure 50 Exclusive Advanced Internet Access topology

Figure 51 shows the structure of the POQ request for creation of Exclusive Advanced Internet Access products. Note that there are 2 items. The Exclusive Advanced Internet Access Product points to Ethernet UNI Access Link Trunk with a relation "CARRIED OVER TRUNK" and the

Ethernet UNI Access Link Trunk with a relation points to an "INSTALL LOCATION".

2281 2282

Figure 51 UC4: POQ Request, product-agnostic part

The configuration of the components is identical to one in Advanced Internet Access product (despite the lack of @type) so it will not be discussed further here.

2285 A.3.5 Use Case 5: Quote - Basic Internet Access

²²⁸⁶ For detailed guidance on how to use the Quote Management API, please refer to MEF 115 [25]

The aim of the Quote step is to allow the Buyer to submit a request to find out how much the installation of a new Product, an update to an existing Product, or a disconnect of an existing Product will cost and what is the term.

This use case is the next step after use case 2. It asks for a quotation of the installation of the Basic Internet Access product, with configuration that was previously checked for availability.

The Quote API carries product information exactly the same way as the POQ in terms of building the request of items, referencing other product, referencing locations, and attaching the product information. The "product" part will be the same as in POQ and will not be discussed further in this chapter.

Figure 52 presents a diagram of a Quote request for creation of Basic Internet Access, with product information skipped.

2298 2299

Figure 52 UC5: Quote Request, product-agnostic part

- 2300 The most important attributes to set in the Quote request are:
- instantSyncQuote to state the preference of receiving an instant (synchronous)
 response or a deferred (asynchronous) one. In the latter case, the Seller only sends
 back an acknowledge response and proceeds with the quotation. The Buyer may
 choose to register for notification or perform a periodical poll.
- requestedQuoteCompletionDate If an instant response is not required this specifies the requested response time.
- buyerRequestedQuoteLevel 3 different types of quotes are managed:
- Budgetary: A Quote that is provided quickly and with very little analysis such that the Buyer can get an idea of how much the requested Product Offering could cost. Any charges specified are subject to change.
- **Firm Subject to Feasibility Check**: A Quote that is provided to the Buyer 2311 0 based on some, but not a complete, pre-order analysis. At this stage, the Seller 2312 may not be willing to perform any further work on the Quote and requests that 2313 the Buyer use the Firm - Subject to Feasibility Check Quote to proceed to the 2314 Order process. Ordering is possible based on the Firm - Subject to Feasibility 2315 Check Quote with some stipulations as to how cost identified during delivery 2316 is addressed. The Monthly Recurring Charges specified in the Quote Response 2317 are final. Non-Recurring Charges specified in the Quote Response are subject 2318

	MEF	Internet Access Product Schemas and Developer Guide
2319		to change and new Non-Recurring Charges may be identified during
2320		fulfillment.
2321		• Firm: A Quote provided to the Buyer based on complete pre-order analysis.
2322		All Monthly Recurring Charges and Non-Recurring Charges specified on a
2323		Firm Quote are committed. A Firm Quote may expire at some date specified
2324		by the Seller.
2325	•	requestedQuoteItemTerm - to specify the term (also known as commitment)

In the response, the Seller confirms (most likely) the quoteLevel, quoteItemTerm and provides a price per each quote item. An example of price specification is shown below:

```
"quoteItemPrice": [
2328
2329
                {
                  "name": "Monthly Plan 25",
2330
                  "priceType": "recurring",
2331
                  "recurringChargePeriod": "month",
2332
                  "price": {
2333
                    "taxRate": 16,
2334
                    "dutyFreeAmount": {
2335
                       "unit": "EUR",
2336
                       "value": 25,
2337
2338
                    },
                    "taxIncludedAmount": {
2339
                       "unit": "EUR",
2340
                       "value": 29,
2341
2342
                    },
2343
                  },
                }
2344
              1
2345
```

Note: The Seller may require the Buyer to perform POQ prior to sending a Quote request.

2347 A.3.6 Use Case 6: Product Order - Basic Internet Access

Product Order allows the Buyer to request the Seller to initiate and complete the fulfillment process of an installation of a Product Offering, an update to an existing Product, or a disconnect of an existing Product at the address defined by the Buyer.

This use case is the next step after use case 5. It places a Product Order for the installation of the Basic Internet Access product, which was qualified and quoted in use cases 2 and 5.

The Order API carries product information exactly the same way as POQ and Quote in terms of building the request of items, referencing other product, referencing locations, and attaching the product information. The "product" part will be the same as in Quote and will not be discussed further in this chapter.

- An example Product Order request can be found in the postman collection. Figure 53 presents it 2357
- with product information skipped for readability. 2358

2360

Figure 53 UC6: Product Order Request, product-agnostic part

The Seller responds with an acknowledge confirmation and then starts processing the order. The 2361 order fulfillment process is longer than a simple request-response one of the previous steps (POQ, 2362 Quote) and the state machine is more complex. The process may also be more interactive due to 2363 charge negotiation, possible request updates, etc.

2364

Product Order API offers much more use cases like updating, expediting, or canceling an order re-2365 quest and additional charge negotiation. For detailed guidance on how to use the Product Order 2366 Management API, please refer to MEF 123 [28]. 2367

A.4 action: modify 2368

The mechanism of building a modification request for both product-independent and product-2369 specific parts for all steps are practically the same as for the create request. 2370

- The differences are in the following common rules (POQ, Quote, Order): 2371
- "item.action" must be set to "modify" 2372 •
- "item.product.id" of the product to be modified must be provided 2373
- "product.productConfiguration" must contain all desired configuration (not only the 2374 modified values) 2375
- "product.productOffering" must not be changed 2376
- The "place" and "productRelationship" lists must comply to Product Specification 2377 • requirements with regards to possibility of modification. In most cases it's prohibited. 2378

A.4.1 Use Case 7: POQ - Advanced Internet Access: Bandwidth change 2379

This use case presents POQ for an Advanced Internet Access product instance bandwidth change. 2380 The assumption is that the change is not significant and can be provided only with an update of 2381

configuration without a need of any installation of new equipment (the "1000BASE_SX" interface
 is used).

2384 This use cases is "applied" to configuration from Use case 2 to an IP UNI product instance with

id=SellerIpUniId-0001. There the POQ request had 4 items to create all four components of

Advanced Internet Access. When the modification is to be applied only to one of them - only single

- POQ item is required in the POQ request. The IP UNI product did not define any place or product
- relations (it is the IPVC and IP UNI Access Link that define relations towards IP UNI) so they are
- also not provided in this request

Figure 54 shows the structure of the POQ product-agnostic part.

2391 2392

Figure 54 UC7: POQ Request, product-agnostic part

Figure 55 shows the configuration of the IP UNI, with highlighted attributes that are to be modified.

2395

2396

Figure 55 UC7: IP UNI configuration

The cir and maxIr attributes change from 500 to 750 MBPS. Note that the new value is still lower than ingressBandwidthProfileEnvelope.maxIrE which sets the limit for the sum of all flow at this IP UNI.

2400 A.5 action: delete

2401 Delete requests are very straightforward, as they only carry the product "id".

- Following common rules apply for delete operation:
- "item.action" must be set to "delete"
- "item.product.id" of the product to be deleted must be provided
- "product.productConfiguration" must not be provided

no other item attribute may be provided (except for optional "billingAccount" in
 Order)

A.5.1 Use Case 8: Quote - Basic Internet Access - delete

2409 This example attempts to quote a deletion of a Basic Internet Access product instance that was

ordered in Use Case 6. Since there was only one Product Order Item, there will also be one Quote

item in the deletion request. Figure 56 shows presents a diagram of a full Quote request for

2412 deletion:

2413

2414

Figure 56 UC8: Quote request

A.5.2 Use Case 9: Product Order - Advanced Internet Access - delete IPVC and End Points only

In Advanced Internet Access case each product can be managed separately and be potentially used by many other products. This use case shows how to delete an IPVC, leaving all other product available for further reuse. Note that the IP UNI product carries IPVC End Point related configuration of bandwidth profiles in ingressBandwidthProfileEnvelope.bwpFlowPerIpvcEp. The relevant entry (the only one in this example) needs to be deleted - this requires a modify action on IP UNI product. The structure of the Product Order request is presented in Figure 57:

2422

2423

Figure 57 UC9: Product Order, product-agnostic part

And the configuration of IP UNI in Figure 58.

Figure 58 UC9: IP UNI configuration

2427A.5.3Use Case 10: Product Order - Exclusive Advanced Internet Access - delete all of items at
once2428once

- 2429 The last use case presents a deletion of all components of Exclusive Advanced Internet Access
- 2430 product. This includes 2 items Exclusive Advanced Internet Access and the Advanced Internet
- Access Ip Uni Access Link Trunk. Figure 59 presents the full Product Order request:

2433

Figure 59 UC10: Product Order request

2434

2435 Appendix B Acknowledgements

The following contributors participated in the development of this document and have requested to be included in this list.

- 2438• David BALL
- Mike **BENCHECK**
- Michał ŁĄCZYŃSKI
- Jack **PUGACZEWSKI**
- Fahim **SABIR**
- Larry **SAMBERG**